Open problems related to polynomial interpolation

Brian Harbourne

December 10, 2025

Abstract: A lot of recent research has been motivated by old still open problems involving polynomial interpolation. I'll survey some of these open problems, and say a little about what they have led to.

Slides available eventually at my website (green text is clickable): https://unlblh.github.io/BrianHarbourne/

0/13 : 50

(Set up: $k = \overline{k}$) Ideals of fat points

Given $p_1, \ldots, p_r \in \mathbb{A}^n \subset \mathbb{P}^n$, $m_1, \ldots, m_r \geq 0$.

$$I = \bigcap_{i=1}^r I(p_i)^{m_i} \subseteq k[\mathbb{A}^n] = k[t_1, \ldots, t_n].$$

Homogenization: $I^* = J = \bigcap_{i=1}^r J(p_i)^{m_i} \subseteq k[\mathbb{P}^n] = k[x_0, x_1, \dots, x_n].$

$$V_d(I) = \langle f \in I : \deg f \leq d \rangle.$$

$$W_d(J) = \langle F \in J : \deg f = d \rangle = [J]_d.$$

$$h_J(d) = \dim W_d(J)$$
 (Hilbert function of J).

Why ideals of fat points?

Easy Fact: $\dim_k V_d(I) = h_J(d) = h^0(X, \mathcal{L}(d, m_1p_1, \dots, m_rp_r))$ where $\pi: X \to \mathbb{P}^n$ is the blow up at the points p_i , and where $\mathcal{L}(d, m_1p_1, \dots, m_rp_r) = \mathcal{O}(d) \otimes \bigotimes_i (\pi^{-1}(p_i)^{\otimes -m_i})$ is a certain line bundle on X.

1/13 : 46.

Warm up: n = 1

Find the Hilbert function h_J of J in terms of the m_i when n = 1.

I.e., find $h_J(d) = \dim_k W_d(J)$ for all d.

Answer: $h_J(d) = \max(0, d+1 - \sum m_i)$

Thus h_J does not depend on the location of the points.

Reason: $k[\mathbb{A}^1]$ is a PID.

2/13 : 42.

n > 1: Some background

Now h_J depends on the relative location of the points.

Definition (*h*-vector): $\overline{h}_J = h_{R/J} = h_R - h_J$, where $R = k[\mathbb{P}^n]$.

 $(\overline{h}_J(d)=\#$ lin. indep. vanishing conditions imposed in degree d.)

Let $\mu(d; m_1, ..., m_r) = \max \overline{h}_J(d)$ over all choices of distinct p_i .

Easy fact: The maximum is achieved for general points p_i (i.e., for (p_1, \ldots, p_r) in a nonempty open subset $U \subset (\mathbb{P}^n)^r$).

Example: 3 points $p_1, p_2, p_3 \in \mathbb{P}^2$, $m_i = 1$:



3 points impose 3 conditions but sometimes only 2 are lin. indep.

3/13 38.5

Single point case: r = 1; $p = p_1$, $m = m_1$

We may assume $p = (0, ..., 0) \in \mathbb{A}^n$.

Here $I = I(p)^m = (t_1, \dots, t_n)^m$ is a monomial ideal:

$$t_1^{\mathfrak{s}_1}\cdots t_n^{\mathfrak{s}_n}\in V_d(I)$$
 if and only if $m\leq \mathfrak{s}_1+\cdots+\mathfrak{s}_n\leq d$.

Thus:

$$h_J(d) = \dim W_d(J) = \dim V_d(I) = \min(0, \binom{d+n}{n} - \binom{m+n-1}{n}).$$

I.e., $\overline{h}_J(d) = \min(\binom{d+n}{n}, \binom{m+n-1}{n}):$

think of this as saying a point of multiplicity m imposes $\binom{m+n-1}{n}$ linear conditions on the $\binom{d+n}{n}$ forms of degree d, where here the conditions are as independent as possible.

4/13 : 34.

Any n, any r points p_i , any multiplicities m_i

Corollary:
$$h_J(d) \ge \max(0, \binom{d+n}{n} - \sum_i \binom{m_i+n-1}{n})$$

Question: Does "=" hold if the points are general?

Answer: Yes, if $m_i = 1$ for all i. But not in general otherwise.

5/13 : 30.

Open Problems

Open Problem 1: When does

$$h_J(d) = \max(0, \binom{d+n}{n} - \sum_i \binom{m_i+n-1}{n})$$

fail if the points are general?

Example: Take $p_1, p_2 \in \mathbb{P}^2$, $m_1 = m_2 = 2$:

$$1 = h_J(2) > 0 = \max(0, \binom{2+2}{2} - \binom{3}{2} - \binom{3}{2}).$$

(N.B. If F defines the line through p_1, p_2 , then $F^2 = gcd(W_2(J))$.)

Open Problem 2: Find $h_J(d)$ in terms of d, m_1, \ldots, m_r, n_r , assuming the points are general.

There are conjectures only for n = 2 (SHGH Conjecture) and n = 3 (Laface-Ugaglia Conjecture).

6/13 : 26.

SHGH: n=2

Conjectures were give by:

Segre 1960, Harbourne 1986, Gimigliano 1987, Hirschowitz 1989 (all equivalent!: Ciliberto, Miranda (2001))

Segre's Conjecture: If equality fails, then $gcd(W_d(J))$ is not squarefree.

(Compare to the example above.)

The others use results of Nagata to reduce the problem to:

Conjecture: if $m_1 \ge \cdots \ge m_r \ge 0$, $d \ge m_1 + m_2 + m_3$, then "=" holds.

7/13 : 23.

Nagata's (Still Open) Conjecture: about 1960

Assume $r \ge 10$, $m_i = m$ for all i and the r points p_i are general.

Conjecture (Nagata): If $h_J(d) > 0$, then $d > m\sqrt{r}$.

Comments:

- 1. Nagata proved this when $\sqrt{r} \in \mathbb{Z}$ and used it to give a counterexample to Hilbert's 14th Problem.
- 2. The SHGH Conjecture implies the Nagata Conjecture.

8/13 : 19.:

Nagata's Conjecture is about "symbolic powers"

Given
$$J = \bigcap_{i=1}^r J(p_i)^{m_i}$$
; denote $\bigcap_{i=1}^r J(p_i)^{mm_i}$ by $J^{(m)}$.

Definition: $J^{(m)}$ is called the mth symbolic power of J.

For general p_i and $J=\cap_{i=1}^r J(p_i)$, Nagata's Conjecture posits $h_{J^{(m)}}(d)>0 \implies d>m\sqrt{r}$.

Fun Fact: Let $I = \bigcap I(p_i)^{m_i}$ and $J = \bigcap_{i=1}^r J(p_i)^{m_i}$. Then:

 $I^m = I(p_1)^{mm_1}\cdots I(p_r)^{mm_r} = \cap_{i=1}^r I(p_i)^{mm_i}$ (Chinese Rem Thm) and

 $J^m \subseteq J^{(m)}$, but typically

 $J^m = J^{(m)}$ fails.

What goes wrong? We only get $J^m \subset J^{(m)}$:

 $J^m = J^{(m)} \cap Q$ where Q is M-primary for $M = (x_0, \dots, x_n)$.

9/13 : 15.4

The resurgence

Let $J = \bigcap_{i=1}^r J(p_i)^{m_i}$ for any r distinct points. Then $J^{(mn)} \subseteq J^m$ for all m (Ein, Lazarfsfeld, Smith, Hochster, Huneke: early 2000s).

Definition (resurgence: 2010 (Bocci-Harbourne)): For $J \neq (1)$, define

$$\rho(J) = \sup\{\frac{m}{s}|J^{(m)} \not\subseteq J^s\}.$$

Fact: $1 \le \rho(J) \le n$.

Proof: $\frac{m}{s} < 1 \implies \frac{m}{s} \le \rho(J)$ hence $1 \le \rho(J)$: $m < s \implies J^m \not\subseteq J^s \implies J^{(m)} \not\subseteq J^s \implies \frac{m}{s} \le \rho(J)$.

$$\frac{m}{s} \geq n \implies m \geq ns \implies J^{(m)} \subseteq J^{(sn)} \subseteq J^s \implies \rho(J) \leq n.$$

What can be said about J for extremal values of $\rho(J)$?

10/13 : 11.5

Open Problem: When is $\rho(J) = 1$?

Open Problem: Classify all fat point ideals J with $\rho(J) = 1$.

If
$$J^{(m)} = J^m$$
 for all m then $\rho(J) = 1$.

Theorem (Harbourne, Kettinger, Zimmitti: 2022): Assume J is reduced (i.e., $m_i = 1$ for all i). Then TFAE:

- (1) J is a complete intersection;
- (2) $J^{m} = J^{(m)}$ for all m; and
- (3) $\rho(J) = 1$.

Open Question: What about when J is not reduced (i.e., when $m_i > 1$ for some i)?

11/13 : 7.3

Open Problem: is $\rho(J)$ ever equal to n?

Can we improve on ELS, HH; i.e., on $J^{(mn)} \subseteq J^m$ for all m?

Containment Conjecture 1 (Harbourne: 2008): $J^{(mn-n+1)} \subseteq J^m$ holds for all m. (Often true but not always.)

Containment Conjecture 2 (Harbourne-Huneke: 2011): $J^{(mn)} \subseteq M^{m(n-1)}J^m$ holds for all m. (Open.)

If Containment Conjecture 2 is true, then so are certain conjectures of Chudnovsky and Demailly.

Let's not give up on Containment Conjecture 1!

Grifo Conjecture: $J^{(mn-n+1)} \subseteq J^m$ for $m \gg 0$. I.e., $J^{(mn-n+1)} \subseteq J^m$ fails for only finitely many m.

Any counterexample to GC has $\rho(J) = n$.

12/13 : 3.8