Powers versus Symbolic Powers of Ideals

Brian Harbourne

Department of Mathematics
University of Nebraska-Lincoln

Special Session on Commutative Algebra and Applications to
Algebraic Geometry
Organized by Jooyoun Hong and Janet Striuli
October 24, 2009

Outline

(1) Symbolic powers
(2) A Measurement Tool
(3) Optimality
(4) Evidence
(5) The Containment Problem

What is a symbolic power?

Given a homogeneous ideal: $I \subseteq k\left[\mathbf{P}^{N}\right]=k\left[x_{0}, \ldots, x_{N}\right]=R$.
Remove foreign primary components from I^{m} to get $I^{(m)}$:
Definition (m th Symbolic Power)
$I^{(m)}=R \cap\left(\cap_{P \in \operatorname{Ass}(I)} I^{m} R_{P}\right)$

Example: Let $I=I\left(p_{1}\right) \cap \cdots \cap I\left(p_{n}\right)$ where $p_{1}, \ldots, p_{n} \in \mathbf{P}^{N}$

$$
\text { and } I\left(p_{i}\right)=\text { ideal in } R \text { of forms vanishing at } p_{i} \text { : }
$$

$I^{m}=\left(I\left(p_{1}\right) \cap \cdots \cap I\left(p_{n}\right)\right)^{m} \quad$ Ordinary Power
$I^{(m)}=I\left(p_{1}\right)^{m} \cap \cdots \cap I\left(p_{n}\right)^{m} \quad$ Symbolic Power

How do I^{m} and $I^{(m)}$ compare?

Fact: $\quad I^{m} \subseteq I^{(m)}$
Example: $\quad I^{m}=I^{(m)}$ can fail.
$I=I\left(p_{1}, p_{2}, p_{3}\right)$ is generated in degree 2 so
$x y z \notin I^{2}$, but $x y z \in I^{(2)}$, hence $I^{2} \subsetneq I^{(2)}$.

In terms of a useful measurement tool, α :
$\alpha\left(I^{(2)}\right)=3$ but $\alpha\left(I^{2}\right)=2 \alpha(I)=4$, where $\alpha(I)$
is the degree of a homogeneous generator of I of least degree.

Waldschmidt and Skoda (1976)

Waldschmidt: Asymptotic Behavior of $\alpha\left(I^{(m)}\right)$

$$
\begin{gathered}
I=I\left(p_{1}, \ldots, p_{n}\right) \subset \mathbf{C}\left[\mathbf{P}^{N}\right] \quad \alpha(I) \quad \alpha\left(I^{(i+j)}\right) \leq \alpha\left(I^{(i)}\right)+\alpha\left(I^{(j)}\right) \\
\begin{array}{c}
-8+\frac{\alpha(I)}{N} \leq \overbrace{m \rightarrow \infty} \frac{\alpha\left(I^{(m)}\right)}{m}
\end{array} \leq \frac{\alpha\left(I^{(m)}\right)}{m} \leq \alpha(I) \\
\text { Skoda } \begin{array}{l}
(* *) \\
\text { hard } \\
(\alpha \text { is sublinear })
\end{array}
\end{gathered}
$$

Proof of $\left({ }^{* *}\right)$: Uses complex analytic methods.
Uses refinements of results of Bombieri on plurisubharmonic functions.

Recall:
Theorem (Ein-Lazarsfeld-Smith 2001 / Hochster-Huneke 2003)
Let $I \subseteq k\left[\mathbf{P}^{N}\right]$ be a homogeneous ideal and $m>0$. Then

$$
I^{(m N)} \subseteq I^{m}
$$

Proof: Find an ideal J such that $I^{(m N)} \subseteq J \subseteq I^{m}$.
ELS: uses multiplier ideals
HH: uses Frobenius powers and tight closure
Alternate Proof of $\left({ }^{* *}\right): I^{(m N)} \subseteq I^{m} \Rightarrow$

$$
\frac{\alpha(I)}{N}=\frac{m \alpha(I)}{m N}=\frac{\alpha\left(I^{m}\right)}{m N} \leq \frac{\alpha(I(m N)}{m N} \underset{m \rightarrow \infty}{\longrightarrow} \gamma(I)
$$

Let $0 \neq I \subsetneq k\left[\mathbf{P}^{N}\right]$ be homogeneous.
W-S inequality: $\frac{\alpha(I)}{\gamma(I)} \leq N . \quad$ ELS-HH result: $I^{(m)} \subseteq I^{r}$ if $N \leq \frac{m}{r}$.

Question: Are the results of W-S \& ELS/HH optimal?

Can the constant N be universally decreased?
Theorem (Bocci-H__ JAG 2009): W-S is optimal: $\sup \left\{\frac{\alpha(I)}{\gamma(I)}\right\}=N$ where the sup is over ideals of finite sets of points in \mathbf{P}^{N}.

If W-S is optimal, so is ELS-HH:
Lemma (Bocci-H__JAG '09): $\frac{m}{r}<\frac{\alpha(I)}{\gamma(I)} \Rightarrow I^{(m t)} \nsubseteq I^{r t}$ for $t \gg 0$.

Nonetheless, can ELS-HH be improved?

Takagi \& Yoshida give examples with $I^{(r N-1)} \subseteq I^{r}$.

Question (Huneke 2003)

For $I=I\left(p_{1}, \ldots, p_{n}\right) \subset k\left[\mathbf{P}^{2}\right]$, is it true that $I^{(3)} \subseteq I^{2}$?
Bocci-H__: $\exists I \subseteq k\left[\mathbf{P}^{N}\right]$ with $I^{(r N-N)} \nsubseteq I^{r}$ for $r \gg 0$.
Fact $\left(\mathrm{H}_{-}\right)$: For these ideals we have $I^{(r N-(N-1))} \subseteq I^{r}$.
This suggests:

Conjecture (H __ 2008)

Let $I \subseteq k\left[\mathbf{P}^{N}\right]$ be homogeneous. Then $I^{(r N-(N-1))} \subseteq I^{r}$.

Example 1: If $I=I\left(p_{1}\right)^{m_{1}} \cap \cdots \cap I\left(p_{n}\right)^{m_{n}} \subset k\left[\mathbf{P}^{N}\right]$ is a fat point ideal, where $\operatorname{char}(k)=q>0$, and $r=q^{i}$, then the conjectural containment $I^{(r N-(N-1))} \subseteq I^{r}$ holds.

Example 2: The conjecture holds for monomial ideals in all characteristics.

Example 3: The conjecture holds for the ideals which Bocci-H \qquad use to show optimality.

Example 4: The conjecture holds for all sets of generic points in \mathbf{P}^{2}, and also for generic points in \mathbf{P}^{N} when the number of points is sufficiently large.

Optimality

Evidence
The Containment Problem
The Containment Problem
Consider homogeneous ideals $0 \neq I \subset k\left[\mathbf{P}^{N}\right]$.

An Old Problem

Which ideals have $I^{(r)}=I^{r}$ for all r ?
(Answers given by Macaulay, Hochster, Morey, Li-Swanson, etc.)

A More General Problem

For each I, find all m and r with $I^{(m)} \subseteq I^{r}$.

Theorem (Bocci-H__ PAMS 2009)

Assume $\alpha(I)=\operatorname{reg}(I)$ and $\operatorname{dim} Z(I)=0$. Then

$$
I^{(m)} \subseteq I^{r} \text { if and only if } \alpha\left(I^{r}\right) \leq \alpha\left(I^{(m)}\right)
$$

Example 1: Let $I=I\left(p_{1}, \ldots, p_{6}\right)$, for $p_{i} \in \mathbf{P}^{2}$ general. Then

$$
\alpha\left(I^{(m)}\right)=\left\lceil\frac{12 m}{5}\right\rceil \text { and } \alpha(I)=\operatorname{reg}(I)=3
$$

so the Theorem applies and

$$
I^{(m)} \subseteq I^{r} \text { if and only if } m \geq \frac{5}{4} r-\frac{5}{12}
$$

hence $I^{(2 r-1)} \subseteq I^{r}$ for all r.

Example 2: Let n be a square such that $n=\binom{s+2}{2}$ for some s.
There are infinitely many such squares; e.g.,

$$
s=0,7,48,287,1680,9799, \ldots
$$

Let $I=I\left(p_{1}, \ldots, p_{n}\right), p_{i} \in \mathbf{P}^{2}$ general. Then $\alpha(I)=\operatorname{reg}(I)=s+1$, so the Theorem applies and

$$
I^{(m)} \subseteq I^{r} \text { iff } r s \leq 1+\left\lfloor\frac{-3+\sqrt{4 n\left(m^{2}+m\right)+1}}{2}\right\rfloor
$$

hence $I^{(2 r-1)} \subseteq I^{r}$ for all r.

Example 3: Let $I=I\left(p_{1}, \ldots, p_{8}\right), p_{i} \in \mathbf{P}^{2}$ general.
Then $3=\alpha(I)<\operatorname{reg}(I)=4$ so Theorem does not apply.
By geometrical methods (Bocci-H__ PAMS 2009):

$$
I^{(m)} \subseteq I^{r} \text { iff either } m=r=1 \text { or } m \geq \frac{17}{12} r-\frac{1}{3},
$$

hence $I^{(2 r-1)} \subseteq I^{r}$ for all r.

Thank You.

