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What is a symbolic power?

Given a homogeneous ideal: I ⊆ k[PN ] = k[x0, . . . , xN ] = R.

Remove foreign primary components from Im to get I (m):

Definition (mth Symbolic Power)

I (m) = R ∩ (∩P∈Ass(I )I
mRP)

Example: Let I = I (p1) ∩ · · · ∩ I (pn) where p1, . . . , pn ∈ PN

and I (pi ) = ideal in R of forms vanishing at pi :

Im = (I (p1) ∩ · · · ∩ I (pn))
m Ordinary Power

I (m) = I (p1)
m ∩ · · · ∩ I (pn)

m Symbolic Power
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How do Im and I (m) compare?

Fact: Im ⊆ I (m)

Example: Im = I (m) can fail.

I = I (p1, p2, p3) is generated in degree 2 so
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xyz �∈ I 2, but xyz ∈ I (2), hence I 2 � I (2).

In terms of a useful measurement tool, α:

α(I (2)) = 3 but α(I 2) = 2α(I ) = 4, where α(I )

is the degree of a homogeneous generator of I of least degree.
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Waldschmidt and Skoda (1976)

Waldschmidt: Asymptotic Behavior of α(I (m))

I = I (p1, . . . , pn) ⊂ C[PN ]

−2 +
α(I )

N
≤ lim

m→∞
α(I (m))

m
≤ α(I (m))

m
≤ α(I )

γ(I )
︷ ︸︸ ︷

(**)
hard

easypretty easy
(α is sublinear)

α(I (i+j)) ≤ α(I (i))+α(I (j))

Proof of (**): Uses complex analytic methods.

����������������������������������������©
Skoda

Uses refinements of results of Bombieri on plurisubharmonic
functions.
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Alternate Proof of (**)

Recall:

Theorem (Ein-Lazarsfeld-Smith 2001 / Hochster-Huneke 2003)

Let I ⊆ k[PN ] be a homogeneous ideal and m > 0. Then

I (mN) ⊆ Im.

Proof: Find an ideal J such that I (mN) ⊆ J ⊆ Im.
ELS: uses multiplier ideals
HH: uses Frobenius powers and tight closure

Alternate Proof of (**): I (mN) ⊆ Im ⇒
α(Im) ≤ α(I (mN))mα(I ) =

mN mN mN
α(I ) =

N
−→
m→∞

γ(I )
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Are W-S & ELS/HH Optimal?

Let 0 �= I � k[PN ] be homogeneous.

W-S inequality: α(I )
γ(I ) ≤ N. ELS-HH result: I (m) ⊆ I r if N ≤ m

r .

Question: Are the results of W-S & ELS/HH optimal?

Can the constant N be universally decreased?

Theorem (Bocci-H JAG 2009): W-S is optimal: sup{α(I )
γ(I )} = N

where the sup is over ideals of finite sets of points in PN .

If W-S is optimal, so is ELS-HH:

Lemma (Bocci-H JAG ’09): m
r < α(I )

γ(I ) ⇒ I (mt) �⊆ I rt for t 
 0.
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Nonetheless, can ELS-HH be improved?

Takagi & Yoshida give examples with I (rN−1) ⊆ I r .

Question (Huneke 2003)

For I = I (p1, . . . , pn) ⊂ k[P2], is it true that I (3) ⊆ I 2?

Bocci-H : ∃ I ⊆ k[PN ] with I (rN−N) �⊆ I r for r 
 0.

Fact (H ): For these ideals we have I (rN−(N−1)) ⊆ I r .

This suggests:

Conjecture (H 2008)

Let I ⊆ k[PN ] be homogeneous. Then I (rN−(N−1)) ⊆ I r .
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Evidence supporting conjecture

Example 1: If I = I (p1)
m1 ∩ · · · ∩ I (pn)

mn ⊂ k[PN ] is a fat point
ideal, where char(k) = q > 0, and r = qi , then the conjectural
containment I (rN−(N−1)) ⊆ I r holds.

Example 2: The conjecture holds for monomial ideals in all
characteristics.

Example 3: The conjecture holds for the ideals which Bocci-H
use to show optimality.

Example 4: The conjecture holds for all sets of generic points in
P2, and also for generic points in PN when the number of points is
sufficiently large.
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The Containment Problem

Consider homogeneous ideals 0 �= I ⊂ k[PN ].

An Old Problem

Which ideals have I (r) = I r for all r?
(Answers given by Macaulay, Hochster, Morey, Li-Swanson, etc.)

A More General Problem

For each I , find all m and r with I (m) ⊆ I r .

Theorem (Bocci-H PAMS 2009)

Assume α(I ) = reg(I ) and dim Z (I ) = 0. Then

I (m) ⊆ I r if and only if α(I r ) ≤ α(I (m)).
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Examples

Example 1: Let I = I (p1, . . . , p6), for pi ∈ P2 general. Then

α(I (m)) =
⌈12m

5

⌉
and α(I ) = reg(I ) = 3,

so the Theorem applies and

I (m) ⊆ I r if and only if m ≥ 5
4 r − 5

12 ,

hence I (2r−1) ⊆ I r for all r .
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More examples

Example 2: Let n be a square such that n =
(s+2

2

)
for some s.

There are infinitely many such squares; e.g.,

s = 0, 7, 48, 287, 1680, 9799, . . . .

Let I = I (p1, . . . , pn), pi ∈ P2 general. Then α(I ) = reg(I ) = s + 1,

so the Theorem applies and

I (m) ⊆ I r iff rs ≤ 1 +
⌊−3 +

√
4n(m2 + m) + 1

2

⌋
,

hence I (2r−1) ⊆ I r for all r .
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More examples

Example 3: Let I = I (p1, . . . , p8), pi ∈ P2 general.

Then 3 = α(I ) < reg(I ) = 4 so Theorem does not apply.

By geometrical methods (Bocci-H PAMS 2009):

I (m) ⊆ I r iff either m = r = 1 or m ≥ 17

12
r − 1

3
,

hence I (2r−1) ⊆ I r for all r .

Thank You.
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