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Tomography: an inverse scattering example

Apply Inverse Scattering perspective in Algebraic Geometry:

GePro-P: Pick a property P and classify finite point sets Z ⊂ Pn

whose Ge neral Pro jections Z to a hyperplane H satisfy P .

Example: Geproci (i.e., P means: Z is a complete intersection).
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Trivial examples of geproci

If Z is contained in a hyperplane and already a complete
intersection, then it is geproci.

If Z ⊂ P2, then Z is geproci.

Open Problem: What nontrivial examples of geproci Z ⊂ Pn are
there (i.e., nondegenerate with n > 2)?

We know examples only for n = 3, in which case we say Z is
(a, b)-geproci if Z is an (a, b) complete intersection with a ≤ b.
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There are 3 kinds of nontrivial geproci in P3

Grids: An (a, b)-grid Z has 2 ≤ a ≤ b.
It is Z = A ∩ B where A is a space
curve consisting of a skew red lines and
B is a space curve consisting of b skew
green lines and each red line intersects
each green line in exactly 1 point. Note
that Z = A ∩ B. (In the figure
a = b = 3.)

Half grids: Here Z is (a, b)-geproci, not a grid and consists of a
points on each of b skew lines (i.e., we have B) or it consists of b
points on each of a skew lines (i.e., we have A), but we don’t have
both A and B. I.e., Z = C ∩D is a complete intersection of curves
C ,D ⊂ H but only one of the curves is the image of a space curve
containing Z and consisting of lines.

Nondegenerate nongrid non-half grids: more on these later
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Grids are well understood

Fact: For an (a, b)-grid with 3 ≤ a ≤ b, the grid lines come from
the rulings on a smooth quadric.

Fact: A (2, b)-grid consists of b ≥ 2 points on each of two skew
lines (but the grid lines need not all lie on a smooth quadric).
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Half Grids are partly understood

Theorem (POLITUS): For every n ≥ 3, there is an
(n, n + 1)-geproci half grid of n points on each of n + 1 skew lines
(which POLITUS calls the “standard construction”). For n = 3,
this is the only half grid and comes from the D4 root system.

Theorem (De Poi, Ilardi, POLITUS): All complex (4, r)-geproci
half grids on r skew lines with transversals have r ≤ 6 and arise in
only two explicitly described ways, related to the D4 and F4 root
systems.

Theorem (Kettinger): For any finite field F , let |F | = q. Then
Z = P3

F ⊂ P3
F

is a (q + 1, q2 + 1)-geproci half grid on q2 + 1 skew
lines (which can be taken to come from a kind of “Hopf fibration”).
E.g., if q = 3, Z is a (4, 10)-geproci half grid on 10 skew lines.

Theorem (Ganger): The half grid skew lines of the standard
construction also can (up to projective equivalence) be taken to
come from the “Hopf fibration”.
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Combinatorics of skew lines: groupoids
Open Question: When are finitely many skew lines the half grid
lines of a half grid?

Groupoid: A category G whose arrows all are invertible.

Example: Skew lines L = {L1, . . . , Lr}, r ≥ 3, give a groupoid GL.

The lines Li are the Objects. Define arrows φijk : Li
Lk−→ Lj :

Li
Lj

Lk

φijk(p) = q

p q Then Hom(Li , Lj) = all
possible compositions
φjs jks+1 · · ·φj1j2k2φij1k1 .

Note: Hom(Li , Li ) is a group, the group of the groupoid.

Open Problem: When is the group finite?
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Groupoid orbits, geproci half grids and the Hopf fibration
The groupoid GL acts on points of the skew lines
L = {L1, . . . , Lr}, so we can talk about groupoid orbits.

Theorem (POLITUS): A geproci half grid is a union of groupoid
orbits on the half grid lines.

Examples (Ganger’s thesis):

(1) If F is a finite field, then the points Z = P3
F form a single

groupoid orbit on the skew lines coming from the “Hopf fibration”.

(2) Up to projective equivalence, the half grid lines of the standard
construction can be chosen to be fibers of the “Hopf fibration” and
then the half grid points form a single groupoid orbit on these lines.

So what is this “Hopf fibration”?
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The Hopf fibration

The original Hopf fibration comes from the field extension R ⊂ C:

S3 → P3
R = PR(C⊕ C)→ PC(C⊕ C) = P1

C = S2.

More generally: let F ⊂ K be any degree 2 field extension. Then:
• K is a 1 dimensional K and a 2 dimensional F vector space;
• K ⊕ K is a 2 dimensional K vector space;
• K ⊕ K is a 4 dimensional F vector space;

and we get a canonical “Hopf fibration” map

P3
F = PF (K ⊕ K )→ PK (K ⊕ K ) = P1

K

where the fibers are collinear sets of points defining skew lines.

Theorem (Ganger): When F ⊂ K is a degree 2 extension of finite
fields, the group of the groupoid on the fibers of the “Hopf

fibration” is K ∗/F ∗, hence cyclic of order |K
∗|

|F∗| = |F |2−1
|F |−1 = |F |+ 1.
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More combinatorics
Consider P3

F over a finite field F . In combinatorics, skew lines
L1, . . . , Lr in P3

F with each Li defined over F is called a spread.

If every point of P3
F is in some line it is a full spread, otherwise a

partial spread.

A spread L1, . . . , Lr is maximal if every F -line L meets some line Li .

Problems partially addressed by combinatorists:
Count the number of full spreads up to projective equivalence.
(The “Hopf fibration” always gives 1; usually there are others.
Hence Z = P3

F is usually a half grid in more than one way.)

More generally, count the number of maximal spreads up to
projective equivalence.

Problems not yet addressed by combinatorists:
Study the groupoid for maximal spreads. For example, when is the
group nonabelian?
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Nondegenerate nongrid non-half grid geproci sets

Very few examples are known in characteristic 0:

(1) A (6, 10)-geproci from the H4 root system (Fraś and Ziȩba).

(2) A (5, 8)-geproci (arxiv:2209.04820).

(3) A (10, 12)-geproci (arxiv:2209.04820).

Kettinger gives more examples in characteristic p > 0 using
maximal partial spreads.

Open Problem: Are there more examples in characteristic 0?
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The Z = ZD4
half grid

This Z is in the intersection of combinatorics, representation
theory and algebraic geometry:

It’s the smallest complex half grid, given by the standard
construction for n = 3 (and hence by the groupoid action on fibers
coming from the Hopf fibration).

Z is the complete intersection of 4 lines with an irreducible cubic:
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Visualizing ZD4

The D4 root system consists of the 24 vectors obtained by
permuting (±1,±1, 0, 0) ∈ R4.

These give the 12 points of ZD4 ⊂ P3
R (i.e., the permutations of

[±1 : ±1 : 0 : 0], but note that [1 : 1 : 0 : 0] = [−1 : −1 : 0 : 0]).

Up to change of coordinates these 12 points can be visualized as a
cube in 3 point perspective:
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Why ZD4
is geproci

The quartic comes from lines through collinear points:

project to plane−−−−−−−−−−→

The cubic is one in a pencil of cubics:

project to plane−−−−−−−−−−→
(3D visualization)
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Some open problems
A (2, 2)-grid is a nontrivial geproci set of 4 linearly general points:

No other nontrivial geproci set that we know of is linearly general.

Open problem: Find a nontrivial linearly general geproci set or
prove none exist.

Example: Say P means “Z is Gorenstein”. Then a set Z of n + 1
general points in Pn is gepro-P since the image Z is a set of n + 1
general points in a hyperplane, which is Gorenstein.

Open Problem: Classify gepro-Gorenstein sets Z .

Every geproci set is also gepro-Gorenstein but not conversely.
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Thanks for your attention!

Teşekkürler
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