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Introduction

Root systems have a history of appearing in algebraic geometry in
interesting ways.

They have come up (at least tangentially) in Rick’s work and they
have come up in some recent research, in a way related to a
problem Rick has worked on.

I want to tell you about this recent research, but first let me
highlight some of Rick’s related work.

So let’s go way back...
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Rick, Jeanne and I shared a grad school o�ce in the 70s

Me Rick Jeanne MIT, 2-229

The o�ce is no longer there. James Simons gave MIT a ton of
money to get rid of it.
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We aren’t the same either! Can you spot Rick?

From 1976:

Thanks to Barbara Peskin for the photo!
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In those days Rick worked on GIT for cubic pencils

Thesis: “On the stability of rational elliptic surfaces with section”. ’79

1st paper: “On the stability of pencils of cubic curves”. Amer. J. ’80

Theorem: A pencil is stable (GIT sense) if and only if it contains
a smooth member and every fiber of the elliptic surface obtained
by blowing up base points is reduced.

The non-stable fibers are reducible, classified by Dynkin diagrams
of a�ne root systems:
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Rick and Ulf Persson
“On extremal rational elliptic surfaces,” Math. Z. ’86

Results: Rick and Ulf studied cubic pencils with finitely many
sections.

extremal = finitely many (�1)-curves

� = number of (�1)-curves

Jacobian = has sections so no multiple fibers

This paper gives a nice formula for � in terms
of the fibers F .

r
2
F = number of reduced components of F

Theorem: � =
Y

F

rF
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The non-Jacobian case...Rick and Me
“Exceptional curves on rational numerically elliptic surfaces,” J. Alg. ’90

A non-Jac. extremal rational elliptic surf. has unique multiple fiber.

m = multiplicity of multiple fiber

rF (t) = power series defined in terms of the Dynkin diagram of F

⇡(t) =
Q

F rF (t) = the Hadamard product:
P

i ai t
i
P

i bi t
i =

P
i aibi t

i

(⇡(t))m = coe�cient of tm in ⇡(t)

Theorem: Except in special cases

� =

 
Y

F

rF (t)

!

m

.

(Results are given in all cases, but the full result is more complicated.)
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Interpolation problems
Ciro, Quim and Olivia have all done work on this with Rick.
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Interpolation problems (continued)
Rd : all forms on P2 of degree d , so R = C[P2] = �dRd .

mP = m1P1 + · · ·+msPs ⇢ P2: scheme defined by all forms vanishing to
order � mi at general points Pi .

[I (mP)]d = I (mP) \ Rd , so I (mP) ⇢ R is the ideal of mP .

Problem: Given m = (m1, . . . ,ms) and d , find dim[I (mP)]d .

There’s a Cremona group G which acts to reduce the data (d ,m1, . . . ,ms)
to the case (*) d � m1 +m2 +m3 with m1 � m2 � · · · � ms � 0.

SHGH Conjecture: Given (*), then

dim[I (mP)]d = max

(
0, dimRd �

X

mi>0

✓
mi + 1

2

◆)
.

This group G is the Weyl group of a Dynkin
diagram. See “On the Kantor group of a set of
points in a plane”, PLMS ’37,
Patrick Du Val, right, for the case s  8.

7/24 7/24 : 35.4



SHGH: Current status

B. Segre BH A. Gimigliano A. Hirschowitz
1961 1986 1987 1989

Theorem All four versions are equivalent. (Ciro and Rick, 2001)

Situation understood for s  9. (Castelnuovo, 1891)

The conjecture is true when 12 � m1 = · · · = ms (Ciro and Rick, 2000)

and for m1 = · · · = m10 when d
m1

< 117
37 (Ciro, Rick, Quim, Olivia, 2011).

But it’s still open!

Idea: Could it help to study versions of a more general problem?
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Unexpectedness: Cook, H., Migliore, Nagel, Compositio ’18
Original SHGH problem: n = 2, Rd = [I (Z )]d for Z = ?,
mP ⇢ P2, Pi general. We say Z has unexpected curves in degree
d and multiplicity m if

dim[I (Z [mP)]d > max{0, dim[I (Z )]d �
X

i

✓
mi + 1

2

◆
}.

The SHGH Conjecture accounts for all known unexpectedness.

New problem: any n, Z = q1 + · · ·+ qr ⇢ Pn any given points qi ,
mP ⇢ Pn, P general. We say Z has unexpected hypersurfaces in
degree d and multiplicity m if

dim[I (Z [mP)]d > max{0, dim[I (Z )]d �
✓
m + n � 1

n

◆
}.

Problem (CHMN): To understand when Z ,m, d is unexpected.
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CHMN
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First example (Di Gennaro, Ilardi, Vallès, ’14)
Z is a set of 9 points in P2 consisting of:

4 general points (red) which give a pencil pf conics;

3 points (white), singular points of the singular
conics;

2 points (black) where a singular conic meets the
line through the singular points of the other 2
singular conics.

Fact: Z has an unexpected quartic with a general triple point; we
expect no such quartic. What does this have to do with roots?

R. Di Gennaro G. Ilardi J. Vallès

11/24 11/24 : 27.1

https://www.geogebra.org/m/gdakgpfn


Root systems and unexpectedness
See H., Migliore, Nagel, Teitler, Mich. J. ’21

Projectivizing the B3 root system gives the 9 points; Z = Z (B3)!

Projectivizing D4 gives 12 points Z (D4) ⇢ P3 with two unexpected
cones: a cubic and a quartic.

Projectivizing F4 gives 24 points Z (F4) ⇢ P3 with two unexpected
cones: a quartic and a sextic.

Projectivizing H4 gives 60 points Z (H4) ⇢ P3 with two unexpected
cones: a sextic and decic (see Wísniewska-Ziȩba, arXiv:2107.08107).

Trying to understand unexpectedness is an
expanding area of research. For example ...

Teitler and a new recruit P. Wísniewska M. Ziȩba
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General projections to a complete intersection: Geproci
Definition: We say a finite set Z ⇢ P3 is (a, b)-geproci if its image
Z under projection to a plane from a general point P 2 P3 is an
(a, b)-complete intersection.

Theorem (Levico Terme Working Group, 2018): A finite
noncoplanar Z ⇢ P3 is (a, b)-geproci if |Z | = ab and Z has
unexpected cones of degrees a  b with no common components.

Corollary: Z (D4), Z (F4) and Z (H4) are geproci!

Open Problems: (1) What other kinds of sets are geproci?

(2) If Z ⇢ P3 is noncoplanar and (a, b)-geproci with 3  a  b,
must Z have unexpected cones of degrees a and b?

(3) Does every noncoplanar geproci set Z have a nontrivial
matroid (e.g., does it have subsets of 3 collinear points)?

13/24 13/24 : 22.9



Levico Terme Working Group, 2018

Alessandra Luca Graham Giuseppe Brian
Bernardi Chiantini Denham Favacchio Harbourne

Juan Tomasz Justyna
Migliore Szemberg Szpond
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Classifying geproci sets is an inverse scattering problem

Studying inverse scattering problems has led to remarkable
advances in scientific knowledge. Here we propose carrying this
idea over to classification problems in algebraic geometry.

Inverse scattering Problems (ISP):
try to discern structure from
projected or reflected data.

Idea: classify structures
algebro-geometrically based on
properties of projected images.
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Some examples of ISP

Echolocation (biology):

Rutherford scattering (physics; led to Bohr model of atom):

X-ray crystallography (chem/bio; led to DNA double helix model):

X-ray di↵raction pattern

Rosalind Franklin
“Photo 51”
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More examples

Tomography (medicine):

GePro-P (math): Pick a property P and classify finite point sets

Z ⇢ Pn whose Ge neral Pro jections Z to a hyperplane satisfy P .

Example 1: Say P means “Z is Gorenstein”. Then a set Z of
n + 1 general points in Pn is gepro-P since the image Z is a set of
n + 1 general points in H, which is Gorenstein.

Open Problem 1: Classify gepro-Gorenstein sets Z .

Geproci is when P means “Z is a complete intersection”. Every
geproci set is also gepro-Gorenstein but not conversely.

Open Problem 2: Classify geproci sets in Pn for n � 3.
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Some history: Polizzi and Panov
We know no interesting examples of geproci sets in Pn for n > 3.

A geproci set Z in a plane H ⇢ P3 is called degenerate; it is just
the complete intersection of two curves in H.

Question 1 (F. Polizzi 2011): Is every geproci set in P3 degenerate?

Answer (D. Panov, 2011): No!
Nondegenerate geproci sets are given
by (a, b)-grids (i.e., sets Z of ab points
where Z = A \ B and A consists of a
skew lines and B consists of b skew lines).

Francesco
Polizzi

and Dimitri
Panov
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What we now know: POLITUS and Kettinger

Call a geproci Z ⇢ P3
trivial if it is a grid or degenerate.

Call a nontrivial geproci Z a half-grid when Z is the complete
intersection of two curves if one curve is a union of lines.

Most known examples over C are half-grids, including Z (D4) and
Z (F4). The POLITUS research group has found many more
half-grids closely related to the combinatorics of skew lines in P3.

We know only 3 examples over C of nontrivial geproci
non-half-grids: Z (H4) and two examples used in quantum
mechanics, a (5, 8)-geproci and a (10, 12)-geproci. Things are
di↵erent in positive characteristics.

Theorem(Kettinger arXiv:2307.04857): Let F be a finite field,
q = |F|. Then the points of P3

F are (q + 1, q2 + 1)-geproci.
Moreover, for odd q � 7 there are nontrivial non-half-grid

(q + 1, d)-geproci sets Z ⇢ P3
F whenever q + 1 < d < q2+1

2 � 6.
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Jake Kettinger
Jake’s results are closely related to the notion of a spread (a topic
in combinatorics), namely the (q + 1)b points on a set of
b  q

2 + 1 skew lines in P3
F over a finite field F of order q. Thanks

to the Hopf fibration, P3
F is itself a spread. Jake’s nontrivial

non-half-grids come from maximal partial spreads.
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Main POLITUS references

POLITUS 1: arXiv:2209.04820 POLITUS 2: arXiv:2308.00761

 Lucja and Karolina Farnik, Tomasz Szemberg, Justyna Szpond,
Luca Chiantini, Giuseppe Favacchio, Juan Migliore, Me.
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Combinatorics of skew lines? POLITUS 2

Any set L = {L1, L2, L3, . . . , Lb} of
skew lines Li ⇢ P3 has an associated
groupoid G (L) generated by the maps
�ijk : Li ! Lj where, given p 2 Li ,
�ijk(p) is the point q 2 Lj such that pq
is contained in the unique quadric Q

containing Li , Lj , Lk .

p

Li

Lj

Lk

Q
q

If p 2 [iLi , the images �(p) of p under all the maps � 2 G (L) for
which �(p) is defined is the orbit of p under the groupoid.

Theorem (POLITUS 2) A geproci half-grid of a points on each of
the b lines of L is a finite union of orbits. Conversely, if Z is a
finite union of finite orbits consisting of a � b � 1 � 3 points on
each of the b lines, then Z is a half-grid (a, b)-geproci set.
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Some open problems...

1. Every grid in P3 is contained in a quadric. If Z is geproci and
contained in a quadric, is Z a grid?

2. Are there nontrivial non-half-grids over C than the 3 we know?

3. The nontrivial non-half-grid (5, 8)-geproci is Gorenstein. Are
there other Gorenstein geproci sets?

4. Is there a finite set of points in Pn that is a nontrivial geproci
set when n > 3?
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Thanks to Rick for giving us a reason to gather here.
Happy 70th!

MFO Concert: 2010
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