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Set up: Strong Lefschetz Property (SLP)

Note: We work over C for this whole talk.

Let R = C[x0, . . . , xr ], and let L ∈ R be a general linear form.

Let L = {L1, . . . , Lr} ⊂ R be linear forms defining distinct
hyperplanes in Pr .

Let I = (Lt1
1 , . . . , L

ts
s ). Assume A = R/I is artinian.

Definition: We say A (or I ) fails SLP in range k and degree d if

Ad−k
×Lk−−→ Ad

does not have maximal rank.



Questions

Can we hope to classify all such failures of SLP?

Probably not in general, but yes in special cases!

Can we always hope to relate all such failures to geometry?

Probably not in general, but yes in special cases!

Aspirational Research Goal: Do both when L is a supersolvable
line arrangement.

Let’s look at some already known special cases.



Some history
Recall I = (Lt1

1 , . . . , L
ts
s ) ⊂ R = C[x0, . . . , xr ] with A = R/I artinian.

• HMNW (Harima, Migliore, Nagel, Watanabe: J. Alg., 2003):

Theorem: If R = C[x0, x1, x2] and J is a complete intersection
(CI) and R/J artinian, then R/J satisfies SLP in range 1 (i.e.,
there are no failures in 3 variables in range 1 when J is a CI).

• SS (Schenck, Seceleanu: PAMS, 2009):

Theorem: If R = C[x0, x1, x2], then A satisfies SLP in range 1
(i.e., there are no failures in 3 variables in range 1 ever).

• MMN (Migliore, Miró-Roig, Nagel: Alg. Number Thry, 2012; s = 4);
AA (Almeida, Andrade: Forum Math.), MN (Migliore, Nagel: J.
Comm. Alg.; s ≥ 4, both 2017):

Theorem: If R = C[x0, x1, x2], Li general and I = (Lt1
1 , . . . , L

ts
s ),

then A = R/I satisfies SLP in range 2 (i.e., there are no failures in
3 variables in range 2).



More history and a little geometry

Failures can occur and sometimes they are related to geometry:

• HSS (BH, Schenck, Seceleanu: JLMS, 2011), MMN (ANT,
2012): for general Li and I = (Lt1, . . . , L

t
s) ⊂ R = C[x0, . . . , xr ],

found failures and related them by inverse systems to geometry of
fat points.

Let P = {p1, . . . , ps} be distinct points in Pr , L = {L1, . . . , Ls}
linear forms defining distinct hyperplanes in Pr .

Write LP for the linear forms dual to the points in P, and PL for
the points dual to the linear foms in L.

• FV (Faenzi, Vallès, JLMS, 2014): for r = 2, relates existence of
plane curves of degree d vanishing on P = {p1, . . . , ps} with
general point of multiplicity m = d − 1 to splitting type of the
syzygy bundle SLP of the Jacobian ideal of I = (L1 · · · Ls) for
LP = {L1, · · · , Ls}.



More history and a little geometry (continued)
Failures can occur and sometimes they are related to geometry:

• DIV (Di Gennaro, Ilardi, Vallès, JLMS 2014): relates existence of
failures of SLP in range 2 and degree t − 2 for
I = (Lt1, . . . , L

t
s) ⊂ R = C[x0, x1, x2], to splitting type of SL.

• CHMN (Cook, BH, Migliore, Nagel, Compositio 2018): using
results of and inspired by FV and DIV, relates failures of SLP to
existence of unexpected curves; characterizes but does not classify
unexpected curves.

There is all sorts of interesting geometry related to unexpected
curves. E.g.:

• BMSS (Bauer, Malara, Szemberg, Szpond, Manus. Math.
2018), HMNT (BH, Migliore, Nagel, Teitler, Mich. J. Math. to
appear): BMSS identified a geometric duality satisfied by
unexpected curves, further studied by HMNT, but it’s not yet clear
how or if this duality is reflected in Lefschetz properties.



Set up: Recall what unexpected curves are

Let P = {p1, . . . , pr}, pi ⊂ P2, with a general point p ∈ P2.

Let I (P) = I (p1, . . . , pr ).

One expects vanishing at p to order m to impose
(m+1

2

)
conditions.

Definition: We say I (P) has an unexpected curve of degree d if

dim[I (P) ∩ (I (p)d−1)]d > max
(

0, dim[I (P)]d −
(
m + 1

2

))
,

where m = d − 1. I.e., there are more curves of degree d with a
general point of multiplicity m = d − 1 and containing P than
expected.



B3: the example from DIV motivating CHMN

The B3 arrangement of 9 lines (the line at infinity is not shown):

(The nine lines of LB3 are dual to the roots of the B3 root system.)



Constructing the points dual to B3 geometrically

4 general points −→ 3 singular conics −→ 4 + 3 + 2 = 9 points:

P



The unexpected quartic
The 9 points impose 9 conditions on quartics, so dim[I (PLB3

)]4 = 6.

Vanishing at p to order 3 should impose 6 conditions in general,
but unexpectedly it imposes only 5. Here is the unexpected quartic
C (in black).

P



BMSS duality
Let p = (a : b : c). Then the form F (a, b, c , x , y , z) defining C is

c3x3y−c3xy3−b3x3z+(3ab2−3ac2)x2yz+(−3a2b+3bc2)xy2z+

a3y3z + (3a2c − 3b2c)xyz2 + b3xz3 − a3yz3.

Now think of F (a, b, c , x , y , z) as a curve D in the variables a, b, c :

= (y3z−yz3)a3−3xy2za2b+3x2yzab2+(−x3z+xz3)b3+3xyz2a2c

−3xyz2b2c − 3x2yzac2 + 3xy2zbc2 + (x3y − xy3)c3.

Then we get C (black) and its BMSS dual curve D (red):

(Problem: Explain BMSS duality in terms of failure of SLP.)



Set up: Unexpected hypersurfaces

More recent work by various people, to be mentioned in more
detail tomorrow by Juan Migliore, have extended the concept of
unexpected curves to hypersurfaces.

Let Z ⊂ Pr be any variety and let p ∈ Pr be a general point.

One expects vanishing at p to order m to impose
(m+r−1

r

)
conditions.

Definition: We say I has an unexpected hypersurface of degree d if

dim[I (Z ) ∩ (I (p)m)]d > max
(

0, dim[I (Z )]d −
(
m + r − 1

r

))
.

I.e., there are more hypersurfaces of degree d with a general point
of multiplicity m and containing Z than expected.



CHMN Theorems

The following result relates failures of SLP and occurrence of
unexpected plane curves.

Theorem (CHMN): A finite set of points P in P2 admits an
unexpected curve of degree t if and only if A = R/I (Lti : Li ∈ LP)
fails SLP in range 2 and degree t − 2.

The following result characterizes occurrence of unexpected curves
(and hence failures of SLP) but does not classify them. Here mP is
the least degree such that there is a curve of degree mP + 1
vanishing on P with a general point of multiplicity mP .

Theorem (CHMN): A finite set of points P in P2 admits an
unexpected curve if and only if 2mP + 2 < |P| but no subset of
mP + 2 or more of the points of P are collinear.



Supersolvable line arrangements

When LP is supersolvable, the previous theorem statement takes
on a very nice form. First, some terminology.

Consider a line arrangement L. Let CL be the set of crossing
points for L (i.e., the points where 2 or more lines in L cross).

A point p ∈ CL is modular if for every q ∈ CL, q 6= p, it is true
that the line pq is in L.

Definition: L is supersolvable (ss) if it has a modular point.

Example 1: This L has 5 lines and two modular points (white).



Example 2: B3

The B3 arrangement is supersolvable, with 3 modular points (two
at infinity).



Theorem of Di Marca, Malara and Oneto (DMO)

Theorem (DMO: J. Alg. Comb., 2019) Let L = {L1, . . . , Lr} be
supersolvable, mL the maximum multiplicity among the crossing
points, and dL = r the number of lines. The following are
equivalent:

(a) R/(Ld1 , . . . , L
d
r ) fails SLP in range 2 and degree d − 2 for some d ;

(a′) R/(Ld1 , . . . , L
d
r ) fails SLP in range 2 and degree d − 2 for d = mL;

(b) PL has an unexpected curve of degree d for some d ;
(b′) PL has an unexpected curve of degree d for d = mL; and
(c) 2mL < dL.

Question: Can we classify supersolvable L for which
R/(Ld1 , . . . , L

d
r ) fails SLP in range 2 and degree d − 2 for some d?

Question: I.e., which supersolvable L have 2mL < dL?

Question: Can we classify supersolvable L?



Classifying complex supersolvable L
Based on 2019 results of Hanumanthu-BH (HH) and Dimca (D).

Let L be supersolvable (ss).

Definition: L is homogeneous (homog) if every modular point has
the same multiplicity.

Theorem (HH): Let L be ss, non-homog. Then L looks like the
following (and thus does not give a failure of SLP):

A

B

What you are seeing:
there is a unique crossing
point (here it’s A) of
maximum multiplicity mL,
there is at most one other point
(here it’s B) of multiplicity
more than 2, and all other
crossing points have
multiplicity 2.

Proof: The key fact is a point of multiplicity mL must be modular.



Homog ss L

Theorem (HH): Let L be ss, homog. Then there are at most 4
modular points.

Proof: The key fact is no three modular points are collinear.

Theorem (HH): There is a unique homog L with 4 modular
points; it has mL = 3:

Here we do not get a failure of SLP.



When are there 3 modular points?

Theorem (HH): If L has exactly 3 modular points, then mL > 3
and (up to choice of coordinates) the lines come from the linear
factors of

xyz(xm−2 − ym−2)(xm−2 − zm−2)(ym−2 − zm−2),

where m = mL. (Here the three modular points are the coordinate
vertices.)

Notes:

(a) If m = 3 this gives the case of 4 modular points.

(b) Each with m > 3 gives a failure of SLP.

(c) The case m = 4 gives the B3 arrangement.



A short-lived conjecture

Note: The 3 modular point ss line arrangement L given by

xyz(xm−2 − ym−2)(xm−2 − zm−2)(ym−2 − zm−2)

has mL = m and dL = 3(mL − 1) lines.

Conjecture (Dimca, July 2019)
A complex ss line arrangement L always has dL ≤ 3(mL − 1).

Theorem (Dimca and Abe, last week)
A complex ss line arrangement L always has dL ≤ 3(mL − 1).
This bound is sharp.



Two modular points, over the reals

Theorem (HH): A real homog L with exactly two modular points,
has d = 2t + 1 + ε with mL = t + 1 for t ≥ 1 and 0 ≤ ε ≤ 2, with
the following excluded cases:
(a) t even, ε = 2 (these are not ss);
(b) t = 2, ε = 1 (this gives 4 modular points); and
(c) t = 3, ε = 2 (this gives 3 modular points).

Here are some L with just two modular points (which are at
infinity; the line at infinity is not shown but is included in L).

ε = 0 (7 lines, left), ε = 1 (8 lines, middle), ε = 2 (13 lines, right)



Two modular points, over the complexes
The ss L with exactly 2 modular points over the complexes are
similar, except (up to lattice-isotopy) ε can be bigger: the range is

0 ≤ ε ≤ mL − 3.

Example: For m > 1, each of the following defines a ss L with
exactly 2 modular points; here 0 ≤ ε ≤ mL − 3, mL = m + 1 and
dL = 2mL − 1 + ε:

xyz(xm−1 − ym−1)(xm−1 − zm−1) (here ε = 0); and in general

xyz(xm−1 − ym−1)(xm−1 − zm−1)(ym−1 − zm−1)H, where H is the
product of any ε < m − 1 factors of ym−1 − zm−1 (here ε = degH).

Those with ε ≥ 2 give rise to failures of SLP.

Theorem (D, 2019): Every complex ss L with exactly 2 modular
points is lattice-isotopic to one of those above.



Open Problems and Conjectures

Given a line arrangement L, let tk(L) denote the number of
crossing points of multiplicity exactly k .

Conjecture (Anzis-Tohǎneanu, 2016): A complex ss L has
2t2(L) ≥ dL. (Tohǎneanu proved this over the reals (2014).)

Conjecture (Hanumanthu-BH, 2015): A complex ss L has
t2(L) > 0.

By the results of Hanumanthu-BH and Dimca, these conjectures
are known if L has at least 2 modular points.

Open Problem (Hanumanthu-BH, posed in 2019): Classify all
complex L, ss or not, with 2t2(L) < dL.

Open Problem: Classify all complex L with t2(L) = 0.



Only 4 complex L with t2(L) = 0 known: are there more?

(1) the arrangements L with d ≥ 3 concurrent lines: td(L) = 1,
and tk(L) = 0 otherwise

(2) the arrangements L defined for n ≥ 3 by the factors of
(xn − yn)(xn − zn)(yn − zn):

dL = 3n, tk(L) = 0 except for t3(L) = 12 if n = 3 and t3(L) = n2,
tn(L) = 3 for n > 3

n = 2

n concurrent black lines
so a point of multiplicity n

n concurrent red lines

so n2 points where both

colors cross

n concurrent blue lines

so tn = 1+1+1 = 3 and t3 = n2



Two more are known
(3) an example L due to F. Klein (1879):

dL = 21, t3(L) = 28, t4(L) = 21,
and otherwise tk(L) = 0

(4) and an example due to A. Wiman (1896):
dL = 45, t3(L) = 120, t4(L) = 45, t5(L) = 36,
and otherwise tk(L) = 0



One more thing...



One more thing...


