H -constants and Line Arrangements

Brian Harbourne

Cather Professor of Mathematics
Department of Mathematics
University of Nebraska-Lincoln
MFO, January 24-30, 2021
Logarithmic Vector Fields and Freeness of Divisors and Arrangements: New perspectives and applications

Organizers:
Takuro Abe, Alex Dimca
Eva-Maria Feichtner, Gerhard Röhrle

January 26, 2021

What are H-constants?

First introduced at MFO in 2010.
Goal: Study how singular a reduced plane algebraic curve can be.
Definition: Let $C \subset \mathbb{P}^{2}$ be a reduced singular curve:

$$
\begin{aligned}
& d=\operatorname{deg}(C) \\
& \left\{p_{1}, \ldots, p_{r}\right\}=\operatorname{Sing}(C) \\
& m_{i}=\operatorname{mult}_{p_{i}}(C)
\end{aligned}
$$

Then

$$
H(C)=\frac{d^{2}-\left(m_{1}^{2}+\cdots+m_{r}^{2}\right)}{r}
$$

Relation to Bounded Negativity Conjecture (BNC)

BNC (rational case): Let X be a smooth projective rational surface over a field $k=\bar{k}$.
(1) $\exists b_{X}$ such that $C^{2} \geq b_{X} \forall$ reduced, irreducible curves $C \subset X$.
(2) $\exists B_{X}$ such that $C^{2} \geq B_{X} \forall$ reduced curves $C \subset X$.

Theorem: $\inf _{C \text { red }} H(C)>-\infty \Rightarrow$ BNC $1 \Longleftrightarrow$ BNC 2.
First implication: obvious.
Second implication, \Leftarrow : obvious
Second implication, \Rightarrow : Reference: Negative curves on algebraic surfaces, Duke Math J. 162 (2013) by Bauer, Harbourne, Knutsen, Küronya, Müller-Stach, Roulleau \& Szemberg.

What is known about the values of H -constants?

- No example is known of a reduced \& irreducible C with $H(C) \leq-2$.

However, if C_{d} is a general plane rational curve of degree d, then

$$
H\left(C_{d}\right)=-2+\frac{6 d-4}{(d-1)(d-2)}
$$

```
so }\mp@subsup{\operatorname{inf}}{\begin{subarray}{c}{\mathrm{ ireduced,}}\\{\mathrm{ irred., sing. }}\end{subarray}}{}H(C)\leq-2
```

- No example is known of a reduced C over \mathbb{C} with $H(C) \leq-4$.
However, examples show $\inf _{\substack{\text { reduced, } \\ \text { singular }}} H(C) \leq-4$.

Reference: Bounded negativity, Miyaoka-Sakai inequality and elliptic curve configurations, IMRN (2017) by Roulleau.

What if C is a union of lines?

Open Question: What is the most negative value of $H(C)$ when C is a rational arrangement of lines?

The most negative such example C known is a simplicial arrangement of 37 lines $(\mathcal{A}(37,3)$ in Grünbaum's list; recall Michael Cuntz's discussion):
$\mathcal{A}(37,3)$ is shown at right; the 37 th line is at infinity.

$$
H(C)=-\frac{503}{181}=-2.78
$$

What if C is a union of real or complex lines?

In the real case, $H(C)>-3$ but $\inf H(C)=-3$, using simplicial, supersolvable examples.

Open Question: How negative can $H(C)$ be for a complex line arrangement?

Theorem: For complex line arrangements, $H(C)>-4$.
The most negative known example comes from a curve with 45 lines constructed by A. Wiman (1896). It has

$$
H(C)=-\frac{225}{67}=-3.56
$$

Reference: Bounded Negativity and Arrangements of Lines, IMRN (2015) by Bauer, Di Rocco, Harbourne, Huizenga, Lundman, Pokora \& Szemberg

Open problems for supersolvable (ss) line arrangements.

Open Problem: How negative can $H(C)$ be when C is complex and supersolvable? (Is it true that $H(C)>-3$?)
Recall: A singular point p of a line arrangement C is modular if every other singular point of C is on a component of C through p.

We say C is supersolvable if it has one or more modular points.
Possible approach: Classify the complex supersolvable C.
Theorem: A "nontrivial" complex supersolvable C has at most 4 modular points. Moreover, those with more than one modular point have been classified, and these have $H(C)>-3$.
Open Problem: Classify complex supersolvable arrangements with only one modular point.

References: (1) Real and complex ss line arrangements in the projective plane, to appear, J. Alg. by Hanumanthu \& Harbourne (2) On complex ss line arrangements, J. Alg. (2020) by Abe \& Dimca

Simple crossings

Note: When C is a line arrangement, $H(C)=\frac{d^{2}-\sum_{i=1}^{r} m_{i}^{2}}{r}$ simplifies to $H(C)=\frac{d-\sum m_{i}}{r}=\frac{d}{r}-\bar{m}$.
Thus having any $m_{i}=2$ seems bad if you want very negative $H(C)$.
Conjecture (Anzis and Tohǎneanu; now a Theorem of Abe): Let t_{2} be the number of points of multiplicity 2 . For a complex supersolvable C of d lines, we have $t_{2} \geq d / 2$.

References:

(1) On the geometry of real or complex supersolvable line arrangements, J. Combin. Theory (2016) by Anzis \& Tohǎneanu
(2) Double points of free projective line arrangements, IMRN 2020 by Abe.

Final open problem

The Wiman arrangement of 45 lines has 120 points of multiplicity 3 , 45 of multiplicity 4 and 36 of multiplicity 5 , but none of multiplicity 2 (i.e., $t_{2}=0$).

Maybe others with $t_{2}=0$ would give very negative H -constants.
Open Problem: Classify complex line arrangements with $t_{2}=0$.
Only 4 kinds are currently known:
(1) Trivial cases ($n \geq 3$ concurrent lines)
(2) Fermat: $\left(x^{n}-y^{n}\right)\left(x^{n}-z^{n}\right)\left(y^{n}-z^{n}\right)=0$ with $n \geq 3$
(3) Klein's (1879): 21 lines with 21 points of multiplicity 4 and 28 of multiplicity 3
(4) Wiman's (1896).

Thank you for your attention!

