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Interpolation problems
Rd : all forms on Pn of degree d , so R = C[Pn] = ⊕dRd , dimRd =

(
d+n
n

)
.

mP = m1P1 + · · ·+ msPs ⊂ Pn: notation for scheme defined by all forms
vanishing to order ≥ mi at general points Pi , where m = (m1, . . . ,ms).

[I (mP)]d = I (mP) ∩ Rd , so I (mP) ⊂ R is the ideal of mP.

Problem: Given m and d , find dim [I (mP)]d .

Theorem 1: dim[I (mP)]d ≥ max
{

0, dimRd −
∑

mi>0

(mi+n−1
2

)}
Problem: When do we have “>”? I.e., dim[I (mP)]d > 0 yet the
points

∑
miPi fail to impose independent conditions on Rd?

SHGH Conjecture: When n = 2, SHGH gives explicit description
for when “>” occurs and what the value of dim[I (mP)]d is.
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SHGH

B. Segre BH A. Gimigliano A. Hirschowitz
1961 1986 1987 1989

• Theorem: All four versions are equivalent. (Ciliberto/Miranda, 2001)

Taking into account the known ways that “>” occurs, SHGH reduces to:

SHGH Conjecture: If n = 2, d ≥ m1 + m2 + m3 and m1 ≥ · · · ≥ ms ,

then dim[I (mP)]d = max
{

0, dimRd −
∑

mi>0

(
mi+1

2

)}
.

Idea: Could it help to study versions of a more general problem?
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New concept: Unexpectedness
Introduced by Cook, H., Migliore, Nagel, Compositio ’18:

Say Pn has unexpected hypersurfaces for vector subspace V ⊆ Rd

and multiplicities m = (m1, . . . ,ms) if

dim[V ∩ I (mP)]d > max{0, dimV −
∑
i

(
mi + n − 1

n

)
}.

Original SHGH problem: n = 2, V = Rd . The SHGH
Conjecture, if true, means the only unexpectedness in this situation
is what’s already known.

But V = Rd is too hard. Let’s try something V ( Rd easier!

Let V = [I (Z )]d for finite set of reduced special points Z ⊂ Pn,

mP = mP ⊂ Pn a single fat general point (so s = 1, m = m1, P = P1).

Problem: Understand n,Z ,m, d where unexpectedness occurs.
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CHMN
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First example

Z is a set of 9 points in P2:

4 general points (red) giving a pencil of conics;

3 points (white), singular points of the singular
conics through the red points;

2 points (black) where a singular conic meets the
line through the singular points of the other 2
singular conics.

We found this set of points in Di Gennaro, Ilardi, Vallès, 2014:

Giovanna
Ilardi Roberta

Di Gennaro
Jean
Vallès
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Computations of unexpectedness:

·

(Click here for dynamic
GeoGebra construction)

dim[I (Z ∪ 3P)]4 > max{0, dim[I (Z )]4 −
(

3 + 2− 1

2

)
}

1 > max{0, 6 − 6 }

So Z has an unexpected quartic! Here it is in black (the general
triple point P is in light blue).

This Z comes from a root system!
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Root systems and unexpectedness
See H., Migliore, Nagel, Teitler, Mich. J. ’21 for B3,D4,F4:

Projectivizing the B3 root system gives the 9 points; Z = Z (B3)!

Projectivizing D4 gives 12 points Z (D4) ⊂ P3 with two unexpected
cones of degrees 3 and 4 (note: 3 · 4 = Z (D4)).

Projectivizing F4 gives 24 points Z (F4) ⊂ P3 with two unexpected
cones of degrees 4 and 6 (note: 4 · 6 = Z (F4)).

Projectivizing H4 gives 60 points Z (H4) ⊂ P3 with two unexpected
cones of degrees 6 and 10 (note: 6 · 10 = Z (H4)).

(see Wísniewska-Ziȩba, arXiv:2107.08107).

Teitler and a new recruit P. Wísniewska M. Ziȩba
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Luca Chiantini’s Observation: Levico Terme Workshop

As an example,
consider 4 general
gray points:

∩ =

For any P, there are 2 cones through the 4 points with vertex P:

here a green cone of degree a = 2 through the ab = 4 gray points,

and a red cone of degree b = 2 through the ab = 4 gray points, and

the projection from P of the 4 points to the plane at the base of
the cones is an (a, b)-complete intersection (i.e., the yellow points)
in that plane.
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Levico Terme Working Group, 2018

Alessandra Luca Graham Giuseppe Brian
Bernardi Chiantini Denham Favacchio Harbourne

Juan Tomasz Justyna
Migliore Szemberg Szpond
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http://gdenham.math.uwo.ca
https://pure.unipa.it/en/persons/giuseppe-favacchio
https://www.math.unl.edu/~bharbourne1/
https://www3.nd.edu/~jmiglior/
http://szemberg.up.krakow.pl
https://www.researchgate.net/profile/Justyna-Szpond


General projections to a complete intersection: Geproci
Definition: We say a finite set Z ⊂ P3 is (a, b)-geproci if its image
Z under projection to a plane from a general point P ∈ P3 is an
(a, b)-complete intersection.

Theorem (Levico Terme Working Group, 2018): A finite
noncoplanar Z ⊂ P3 is (a, b)-geproci if |Z | = ab and Z has cones
of degrees a ≤ b with no common components.

Corollary: Z (D4), Z (F4) and Z (H4) are geproci!

Open Problems: (1) What other kinds of sets are geproci?

(2) If Z ⊂ P3 is noncoplanar and (a, b)-geproci with 3 ≤ a ≤ b, Z
has cones of degrees a and b with the same general vertex P. Are
these cones unexpected?

(3) Does every noncoplanar geproci set Z have a nontrivial
matroid (e.g., does it have subsets of 3 collinear points)?
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Some history: Polizzi and Panov
We know no interesting examples of geproci sets in Pn for n > 3.

A geproci set Z in a plane H ⊂ P3 is called degenerate; it is just
the complete intersection of two curves in H.

Question 1 (F. Polizzi 2011): Is every geproci set in P3 degenerate?

Answer (D. Panov, 2011): No!
Nondegenerate geproci sets are given
by (a, b)-grids (i.e., sets Z of ab points
where Z = A ∩ B and A consists of a
skew lines and B consists of b skew lines).

Francesco
Polizzi

and Dimitri
Panov
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https://mathoverflow.net/questions/67265/when-is-a-general-projection-of-d2-points-in-mathbbp3-a-complete-inters
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We know more now: main POLITUS references

POLITUS 1: arXiv:2209.04820 POLITUS 2: arXiv:2308.00761

 Lucja and Karolina Farnik, Tomasz Szemberg, Justyna Szpond,
Luca Chiantini, Giuseppe Favacchio, Juan Migliore, Me.
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https://arxiv.org/pdf/2209.04820.pdf
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Classifying geproci sets in P3 (POLITUS)

1. Degenerate case: two curves in a plane meeting transversely.

2. Grids: any set of b points on each of 2 skew lines, or the points
where a lines in one ruling on a smooth quadric meet b lines in the
other ruling.

3. Half grids: Deep connections with combinatorics!

4. Everything else: still not well understood!
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Case 3: Combinatorics (skew lines) = Geometry (geproci)

Given L = {L1, . . . , Ls}, s ≥ 3 skew lines in P3 (over any field).

Given p ∈ Li , q ∈ Lj , i < j : Say p ∼ q iff

〈p, q〉 ∩ Lk 6= ∅, k 6= i , j . Li

Lj
Lk

L = 〈p, q〉
p

q

This generates an equivalence relation ∼=L on ∪iLi .
(Denote the equivalence class of a point p by [p].)

Say Z has (∗) if Z ⊂ ∪iLi satisfies |Z ∩ Li | = r for all i where
r = |Z |/s. Say a Z with (∗) is (r ,L)-geproci if its projection Z
from a general point to a plane is a complete intersection of type
(r , s) with the image of L giving the generator of degree s.

Combinatorics = Geometry Theorem (POLITUS): Given Z
with (∗). Then Z is (r ,L)-geproci iff Z is a union of finite ∼=L
equivalence classes.
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New Results on the Combinatorics of Skew Lines.

Given L = {L1, . . . , Ls}, s ≥ 3 skew lines in P3 (over any field).

Let p ∈ Li . There is a group GL ⊂ Aut(P1) such that [p] ∩ Li is
the GL-orbit of p.

Theorem: (POLITUS)

• GL is abelian iff there are two or more lines (counted with
multiplicity) meeting each line in L.

• If GL is infinite then all but at most two orbits are infinite, and
the finite orbits are singletons. (When GL is abelian, it acts by
scale transformations or translations.)

Open Problem: Classify the finite groups that arise as GL.
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Jake Kettinger and Allison Ganger

Jake has found a method to construct type 4 geproci sets in
positive characteristics.

Allison Ganger has computed the group GL for a range of cases.
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Classifying geproci sets is an inverse scattering problem

Studying inverse scattering problems has led to remarkable
advances in scientific knowledge. Here we propose carrying this
idea over to classification problems in algebraic geometry.

Inverse scattering Problems (ISP):
try to discern structure from
projected or reflected data.

Idea: classify structures
algebro-geometrically based on
properties of projected images.
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Some examples of ISP

Echolocation (biology):

Rutherford scattering (physics; led to Bohr model of atom):

X-ray crystallography (chem/bio; led to DNA double helix model):

X-ray diffraction pattern

Rosalind Franklin
“Photo 51”
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More examples

Tomography (medicine):

GePro-P (math): Pick a property P and classify finite point sets

Z ⊂ Pn whose Ge neral Pro jections Z to a hyperplane satisfy P .

Example 1: Say P means “Z is Gorenstein”. Then a set Z of
n + 1 general points in Pn is gepro-P since the image Z is a set of
n + 1 general points in H, which is Gorenstein.

Open Problem 1: Classify gepro-Gorenstein sets Z .

Geproci is when P means “Z is a complete intersection”. Every
geproci set is also gepro-Gorenstein but not conversely.

Open Problem 2: Classify geproci sets in Pn for n ≥ 3.
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I migliori auguri a Sandro per 70 meravigliosi anni

e per tutti gli anni a venire!
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