
Uwe’s impact on some recent research

Brian Harbourne

Cather Professor of Mathematics

Fellow of the AMS

Department of Mathematics

University of Nebraska-Lincoln (UNL)

Uwe Fest: Conference on Commutative Algebra and its Interaction with Algebraic

Geometry and Algebraic Combinatorics, August 12–16, 2024

Organizers: Juan Migliore, Sonja Petrović, Claudia Polini, Bernd Ulrich

August, 2024

Slides available eventually at my website (green text is clickable):
https://unlblh.github.io/BrianHarbourne/

1/21 : 50 � 2.4 = 47.6 1/21 : 50 � 2.4 = 47.6

https://sites.nd.edu/uwefest2024/
https://sites.nd.edu/uwefest2024/
https://unlblh.github.io/BrianHarbourne/


A lot of my recent work traces to joint work with Uwe

So how did Uwe and I meet?

Meeting #1 (I think): 1992 Ravello conference
(pre-WWW so no photographic evidence!)

Here’s a photo of the Villa Rufolo in Ravello:
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Meeting #2 (also Italy), with photos:

Naples, 2000 (but no joint photo):
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Meeting #3 (Italy, yet again): finally, a joint photo!

TonyFest, Acireale, Sicily, 2002
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Meeting #3 (Italy, yet again): finally, a joint photo!

TonyFest, Acireale, Sicily, 2002
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My papers with Uwe
arXiv # Journal & year # authors: topic
arXiv:1404.4957 J. Algebra 2015 6: resurgences
arXiv:1508.00477 J. Alg. Comb. 2016 9: Waldschmidt consts.
arXiv:1502.00167 J. Algebra 2019 7: secant varieties
arXiv:1507.00380 TAMS 2017 4: matroids-symb. powers
arXiv:1602.02300 Compositio 2018 4: unexpectedness
arXiv:1805.10626 Mich. Math. J. 2021 4: root syst.-unexp
arXiv:2303.13317 Cortona Proc., to app 3: survey on unexp

I gave a 2018 Notre Dame algebra seminar on arXiv:1602.02300:

Matthew Dyer (of Notre Dame) pointed out one of our examples
was a projectivized root system! That led to:

Mich. Math. J. 2021: Harbourne, Migliore, Nagel, Teitler (HMNT).
“Unexpected hypersurfaces and where to find them,”

which has led to a new paradigm in algebraic geometry!
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The HMNT example that led to the new paradigm

The 12 point projectivization Z = ZD4
of the D4 root system!
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HMNT: ZD4
has two unexpected cones (TL;DR)

• Z = ZD4
⇢ Pn: n = 3, |Z | = r = 12 points.

• Z imposes indep conditions on forms Hd of degree d , hence:

dim[IZ ]d =

(
0 d < 3�d+n

n

�
� r d � 3.

• exp dim of all Hd ,m 2 [IZ ]d vanishing at general point P with
multiplicity m:

exp dim = max {0, virtual dim} = max

⇢
0, dim[IZ ]d �

✓
n +m � 1

n

◆�
.

• For cones Hd ,m we have m = d :

d virtual dim actual dim conclusion
3 �2 1 this cubic cone is unexpected
4 3 4 the quartic cones are unexpected.
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HMNT: ZD4
has two unexpected cones (short version)

• P is a general point

• ZD4
⇢ C3 where C3 is a cubic cone with vertex P

• ZD4
⇢ C4 where C4 is a quartic cone with vertex P

• C3 \ C4 = the cone over ZD4
of 12 lines through P

Where do these cones come from?

So what? (first noticed at Levico Terme conference, 2018): This
means ZD4

projects from P to a complete intersection! I.e., ZD4
is

geproci (this was the first “nontrivial” example; in this case ZD4
is

a “half grid”).

The Paradigm: This is an example of applying an inverse
scattering perspective to algebraic geometry; i.e., study point sets
by the properties of their projections.
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Tomography: an inverse scattering example

Apply Inverse Scattering perspective in Algebraic Geometry:

GePro-P: Pick a property P and classify finite point sets Z ⇢ Pn

whose Ge neral Pro jections Z to a hyperplane H satisfy P .

Example: Geproci (i.e., P means: Z is a complete intersection).

11/21 : 50 � 26.2 = 23.8 11/21 : 50 � 26.2 = 23.8



Trivial examples of finite sets Z that are geproci

If Z is contained in a hyperplane and already a complete
intersection, then it is geproci.

If Z ⇢ P2, then Z is geproci.

“Grids” in P3 are geproci.
(A grid Z consists of ab points which
are the intersection of space curves of
degrees a and b, each curve consisting
of lines).

Open Problem: Find n > 3 (if any) having nondegenerate
examples of geproci Z ⇢ Pn.

We know examples only for n = 3, in which case we say Z is
(a, b)-geproci if Z is an (a, b) complete intersection.

12/21 : 50 � 28.6 = 21.4 12/21 : 50 � 28.6 = 21.4



An example of nondegenerate nongrid geproci: Half grids

Half grids: A half grid Z is an (a, b)-geproci set with b points of
Z on each of a skew lines, but Z is not a grid, so there is no
separate set of b skew lines with a points on each line. (For
example, ZD4

is (4, 3)-geproci, not a grid, and contained in a
quartic of a = 4 skew lines with b = 3 points on each line.)

(POLITUS: Luca Chiantini,  Lucja Farnik, Giuseppe Favacchio, Brian

Harbourne, Juan Migliore, Tomasz Szemberg, Justyna Szpond)

Theorem (POLITUS): For every n � 3, there is an
(n, n + 1)-geproci half grid of n points on each of n + 1 skew lines
(which POLITUS calls the “standard construction”; e.g., for n = 3,
this gives the unique half grid, which is ZD4

).

Theorem (Jake Kettinger): For any finite field F , let |F | = q.
Then Z = P3

F ⇢ P3

F
is a half grid of q + 1 points each on q

2 + 1
skew lines which come from a kind of “Hopf fibration”. E.g., if
q = 3, Z is a half grid of 4 points each on 10 lines.
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Combinatorial structure of half grids

Theorem (POLITUS): Say Z is a half grid of a points on each of
b > 3 lines L1, . . . , Lb. Then Z

0 = Z \ (Li1 [ Li2 [ Li3), i1 < i2 < i3,
is a grid. In particular, for each point p1 2 Z \ Li1 there are points
p2 2 Z \ Li2 and p3 2 Z \ Li3 such that p1, p2, p3 are collinear.

Open Question: When are finitely many skew lines the lines of a
half grid?

A finite set of 3 or more skew lines always has a “groupoid”
structure (as will see).

Corollary (POLITUS): The lines L1, . . . , Lb have a finite groupoid
structure, and Z is a union of orbits of this finite groupoid.

Open Question: When does a finite set of skew lines have a finite
groupoid?
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Combinatorics of skew lines: groupoids

Groupoid: A category G whose arrows all are invertible.

Example: Skew lines L = {L1, . . . , Lr}, r � 3, give a groupoid GL.

The lines Li are the Objects. Define arrows �ijk : Li
Lk�! Lj :

Li
Lj

Lk

�ijk(p) = q

p
q Then Hom(Li , Lj) = all

possible compositions
�js jks+1

· · ·�j1j2k2�ij1k1 .

Note: Hom(Li , Li ) is a group, independent of i , the group of the
groupoid. The groupoid is finite if and only if the group of the
groupoid is.

Open Problem: When is the group finite?
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Groupoid orbits, geproci half grids and the Hopf fibration

The groupoid GL acts on points of the skew lines
L = {L1, . . . , Lr}, so we can talk about groupoid orbits.

Theorems (Allison Ganger):

(1) If F is a finite field, then the points Z = P3

F ⇢ P3

F
form a single

groupoid orbit on the skew lines coming from the “Hopf fibration”.

(2) Up to projective equivalence, the half grid lines of the standard
construction can be chosen to be fibers of the “Hopf fibration” and
then the half grid points form a single groupoid orbit on these lines.

So what is this “Hopf fibration”?

A visualization of the traditional Hopf fibration S
3 ! S

2
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The Hopf fibration algebraically

The original Hopf fibration comes from the field extension R ⇢ C:
S
3 ! P3

R = PR(C� C) ! PC(C� C) = P1

C = S
2.

More generally: let F ⇢ K be any degree 2 field extension. Then:
• K is a 1 dimensional K and a 2 dimensional F vector space;
• K � K is a 2 dimensional K vector space;
• K � K is a 4 dimensional F vector space;

and we get a canonical “Hopf fibration” map

P3

F = PF (K � K ) ! PK (K � K ) = P1

K

where the fibers are collinear sets of points defining skew lines.

Theorem (Ganger): When F ⇢ K is a degree 2 extension of finite
fields, the group of the groupoid on the fibers of the “Hopf

fibration” is K ⇤/F ⇤, hence cyclic of order |K⇤|
|F⇤| =

|F |2�1

|F |�1
= |F |+ 1.
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More combinatorics

Consider P3

F over a finite field F . In combinatorics, skew lines
L1, . . . , Lr in P3

F with each Li defined over F is called a spread.

If every point of P3

F is in some line it is a full spread, otherwise a
partial spread.

A spread L1, . . . , Lr is maximal if every F -line L meets some line Li .

Problems partially addressed by combinatorists:
Count the number of full spreads up to projective equivalence.
(The “Hopf fibration” always gives one; usually there are others.
Hence Z = P3

F is usually a half grid in more than one way.)

More generally, count the number of maximal spreads up to
projective equivalence.

Problems not yet addressed by combinatorists:
Study the groupoid for maximal spreads. For example, when is the
group nonabelian? (Ganger gives nonabelian examples.)
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Nondegenerate nongrid non-half grid geproci sets

Very few examples are known in characteristic 0:

(1) A (6, 10)-geproci from the H4 root system (Fraś and Ziȩba).

(2) A (5, 8)-geproci (arxiv:2209.04820).

(3) A (10, 12)-geproci (arxiv:2209.04820).

Open Problem: Are there more examples in characteristic 0?

Open Problem: For each r � 0, construct a nondegenerate
nongrid non-half grid geproci Zr ⇢ P3

K with |Zr | � r , or show this
is impossible.

Note: Jake Kettinger has settled this a�rmatively in positive
characteristics.
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Some open problems

A (2, 2)-grid is a nontrivial geproci set of 4 linearly general points:

No other nontrivial geproci set that we know of is linearly general.

Open problem: Find a nontrivial linearly general geproci set or
prove none exist.

Example: Say P means “Z is Gorenstein”. Then a set Z of n + 1
general points in Pn is gepro-P since the image Z is a set of n + 1
general points in a hyperplane, which is Gorenstein.

Open Problem: Classify gepro-Gorenstein sets Z .

Every geproci set is also gepro-Gorenstein but not conversely.
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Thanks for your attention! And thanks to Uwe for his

many years of contributions to mathematics!

MFO MFO Cortona
1999 2009 2022
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