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Abstract

The last few years have seen a lot of work on asymptotic quantities
with connections to algebraic geometry, commutative algebra and
combinatorics, like resurgences, Waldschmidt constants and
H-constants. I will review these quantities and these connections
and survey some of this work, and highlight results and open
problems regarding the computability of some of these constants.



Set up

K is an algebraically closed field, of arbitrary characteristic.

Fat point scheme: Z = m1p1 + · · ·+ msps for p1, . . . , ps ∈ Pn.

So Z is scheme defined by the ideal I (Z ) = I (p1)m1 ∩ · · · ∩ I (ps)ms .

Note: I (pi ) ⊂ K [Pn] = K [x0, . . . , xn] is the ideal generated by all
homogeneous F with F (pi ) = 0.

Ordinary powers: I (Z )r =
(
I (p1)m1 ∩ · · · ∩ I (ps)ms

)r
.

Symbolic powers: I (Z )(m) = I (mZ ) = I (p1)mm1 ∩ · · · ∩ I (ps)mms .

Fundamental Question: How do symbolic powers relate to
ordinary powers?



Containment Problem i (CPi)
CP1: Given fat points Z ⊂ Pn, find all (m, r) with I (mZ ) ⊆ I (Z )r .

Facts: Assume 0 6= Z ⊂ Pn.

• (easy) I (Z )r ⊆ I (mZ ) iff r ≥ m.

• (easy) I (mZ ) ⊆ I (Z )r always fails for m < r .

• (hard) Thm (Ein-Lazarsfeld-Smith/Hochster-Huneke: ELS-HH,
early 2000s)

I (mZ ) ⊆ I (Z )r always holds for m ≥ nr .

(In particular, I (nrZ ) ⊆ I (Z )r always holds.)

CP2: What happens for r ≤ m < nr?



A strategy

Strategy: Study how big can k be and still have I (mZ ) ⊆ I (Z )r

for m ≥ nr − k .

Example: Take K = C, n = 2, k = 1. Assume
m ≥ nr − k = 2r − 1.

• Failures of I (mZ ) ⊆ I (Z )r are known when r = 2 (since 2013).

• No failures of I (mZ ) ⊆ I (Z )r are known for r > 2.

Conjecture (Grifo, 2018): Let k ≥ 0. Then I (mZ ) ⊆ I (Z )r for all
m ≥ nr − k for r � 0.

Question: If true, how big must r be for containment to hold?



Example result

Theorem: Let Z = p1 + p2 + p3 ⊂ P2, 3 points in the plane not
on a line (so n = 2). Then Grifo Conjecture holds for Z , and
r > 3k/2 suffices.

Z :

p1

p2

p3

How can one prove this?

It’s enough to compute an asymptotic quantity, the resurgence.

To do this, we’ll need to compute another asymptotic quantity, the
Wadschmidt constant.



The resurgence

Bocci-Harbourne, 2010: The resurgence of I (Z ) is defined to be

ρ(I (Z )) = sup
{m
r

: I (mZ ) 6⊆ I (Z )r
}
.

Comment: Thus m/r > ρ(I (Z )) implies I (mZ ) ⊆ I (Z )r .

Fact: Let 0 6= Z ⊂ Pn be fat points. Then

1 ≤ ρ(I (Z )) ≤ n.

Note: 1 ≤ ρ(I (Z )) is easy and ρ(I (Z )) = 1 happens (take Z = p);
ρ(I (Z )) ≤ n is a corollary of ELS-HH Theorem.

Open Problem: Does ρ(I (Z )) = n ever happen?



Application
Fact: If ρ(I (Z )) < n, then Grifo’s conjecture holds for Z .

Proof: Assuming ρ(I (Z )) < n and m ≥ nr − k , we need to show
for r � 0 that I (mZ ) ⊆ I (Z )r , so it’s enough to show for r � 0 that

m

r
> ρ(I (Z )).

But
m

r
≥ nr − k

r
, while

nr − k

r
> ρ(I (Z )) simplifies to r >

k

n − ρ(I (Z ))
.

Thus I (mZ ) ⊆ I (Z )r holds for all r >
k

n − ρ(I (Z ))
.

Example: Let Z = p1 + p2 + p3 ⊂ P2, 3 points in the plane not on
a line (so n = 2). Claim: ρ(I (Z )) = 4/3 < n = 2.

Thus Grifo’s Conjecture holds for Z for r >
k

n − ρ(I (Z ))
= 3k/2.

But why is ρ(I (Z )) = 4/3?



Computing resurgences

Question: How do you compute ρ(I (Z ))?

In general it’s not known! There are some special case results.

Theorem (Bocci-Harbourne, 2010):

α(I (Z ))

α̂(I (Z ))
≤ ρ(I (Z )) ≤ reg(I (Z ))

α̂(I (Z ))

α(I (Z )): the degree of a nonzero element of I (Z ) of least degree.

reg(I (Z )): Castelnuovo-Mumford regularity.

α̂(I (Z )) = lim
m→∞

α(I (mZ ))

m
(the Waldschmidt constant of I (Z ))



Back to the example

Example: Let Z = p1 + p2 + p3 ⊂ P2, 3 points in the plane not on
a line (so n = 2). So why is ρ(I (Z )) = 4/3?

First it’s easy to check that α(I (Z )) = 2 = reg(I (Z )). Hence

2

α̂(I (Z ))
=
α(I (Z ))

α̂(I (Z ))
≤ ρ(I (Z )) ≤ reg(I (Z ))

α̂(I (Z ))
=

2

α̂(I (Z ))
.

Thus ρ(I (Z )) =
2

α̂(I (Z ))
so now we just need to compute α̂(I (Z )).



Computing Waldschmidt constants

Question: How can you compute α̂(I (Z ))?

In general it’s not known! There are some special case results.

The following fact holds for all m ≥ 1 (due to Waldchmidt and
Skoda for m = 1 in 1979):

α(I (mZ ))

m + n − 1
≤ α̂(I (Z )) ≤ α(I (mZ ))

m
.

This shows you can in principle compute α̂(I (Z )) arbitrarily
accurately just by computing α(I (mZ )) for large enough m.

The upper bound is because α(I (mZ))
m ≥ α(I (tmZ))

tm for t ≥ 1.

The lower bound uses a fact from ELS-HH:



Proof of lower bound
Fact (ELS-HH): For fat points Z ⊂ Pn we always have

I (r(m + n − 1)Z ) ⊆ I (mZ )r .

(m = 1 gives the case from before, I (nrZ ) ⊆ I (Z )r )

To show:
α(I (mZ ))

m + n − 1
≤ α̂(I (Z ))

Proof (Harbourne-Roé): Apply α to I (r(m + n − 1)Z ) ⊆ I (mZ )r

to get

rα(I (mZ )) = α(I (mZ )r ) ≤ α(I (r(m + n − 1)Z )).

Divide by r(m + n − 1) and take limr→∞:

α(I (mZ ))

m + n − 1
≤ α(I (r(m + n − 1)Z ))

r(m + n − 1)
→ α̂(I (Z )).



Chudnovsky-Demailly Conjecture

Conjecture (1981):
α(I (mZ )) + n − 1

m + n − 1
≤ α̂(I (Z ))

Chudnovsky proves it for Z reduced, n = 2, m = 1; thus in this
case we get for all t ≥ 1 that

α(I (Z )) + 1

2
≤ α̂(I (Z )) ≤ α(I (tZ ))

t
.

Now for Z being 3 noncollinear points in the plane and t = 2 we
have

2 + 1

2
=
α(I (Z )) + 1

2
≤ α̂(I (Z )) ≤ α(I (tZ ))

t
=

3

2
.

So α̂(I (Z )) = 3/2, hence ρ(I (Z )) = 2/α̂(I (Z )) = 4/3.



Open Problems

• Compute α̂(I (Z )) for Z = p1 + · · ·+ ps ⊂ Pn, s � 0, pi generic.

• Nagata Conj. (1959): n = 2, s > 9, pi generic ⇒ α̂(I (Z )) =
√
s.

• Chudnovsky-Demailly Conj.:
α(I (mZ )) + n − 1

m + n − 1
≤ α̂(I (Z ))

• Grifo Conj.: Let k ≥ 0. Then I ((nr − k)Z ) ⊆ I (Z )r for r � 0.

• Does ρ(I (Z )) = n ever happen?



Other recent work relates to combinatorics

• H.T. Ha and N.V. Trung (AMV 2019, arXiv:1808.05899, in
article dedicated to 60th birthday of L.T. Hoa) prove:

Theorem. Let I be a squarefree monomial ideal. Then
ρ(I ) ≤ ω(I ), where ω(I ) is the degree of a generator of maximal
degree in a minimal set of generators for I .

• C. Bocci, S. Cooper, E. Guardo, B. Harbourne, M. Janssen, U.
Nagel, A. Seceleanu, A. Van Tuyl, T. Vu (JACo 2016
arXiv:1508.00477)

Theorem. For a hypergraph H with a nontrivial edge,

α̂(I (H)) =
χ∗(H)

χ∗(H)− 1

where χ∗(H) is the fractional chromatic number of H.



Additional recent work
• M. DiPasquale, C.A. Francisco, J. Mermin, J. Schweig (TAMS
2019, arXiv:1808.01547) Shows ρ̂(I ) is the maximum of finitely
many ratios involving Waldschmidt-like constants. This reduces
computing ρ̂(I ) to computing Waldschmidt-like constants and thus
gives an algorithm in some cases.

Note: Guardo-H -Van Tuyl (2013):

ρ̂(I (Z )) = sup
{

m
r : I (mtZ ) 6⊆ I (Z )rt , t � 0

}
• S. Tohaneanu, Y. Xie (arXiv:1903.10647).

Theorem: If 0 6= Z ⊂ Pn is a reduced point scheme, then

ρ(I (tZ )) ≤ t + n − 1

t
.

Note: Thus, for n, t > 1 and 0 6= Z ⊂ Pn a reduced point scheme,
we have ρ(I (tZ )) < n, so Grifo’s conjecture holds for I (tZ ).



H-constants and Bounded Negativity

Let F ∈ C[x , y , z ] be homogeneous, square free of degree d .

Thus F = 0 defines a reduced plane curve C .

Let p1, . . . , ps be the singular points of C , mi = multC (pi ).

Fundamental Question (arXiv:1407.2966): How singular can C
be? More precisely, when s > 0, how negative can H(C ) be, where

H(C ) =
d2 −

∑
i m

2
i

s
?

Let HP2 = inf
reduced, singular

plane curves C

H(C ).

Bounded Negativity Problem: Is HP2 = −∞?



H-constants for C irreducible
Example: For each d there is an irreducible plane curve Cd with
deg(Cd) = d with

(d−1
2

)
double points (take a general map of P1

into P2).

d = 3: 1 node d = 4: 3 nodes d = 5: 6 nodes

Thus H(Cd) =
d2 − 4

(d−1
2

)(d−1
2

) = −2 +
6d − 4

(d − 1)(d − 2)

d→∞
−→ − 2.

Open Problem: Does there exist irreducible C with H(C ) ≤ −2?



H-constants for C a union of lines
Theorem (arXiv 1407.2966): Let L be a real line arrangement.
Then H(L) > −3. Moreover, there is a sequence L3, L5, L7, . . . of

real line arrangements such that H(Ln)
n→∞
−→ − 3.

Proof: H(L) > −3 follows from a combinatorical result of
E. Melchior saying for a nontrivial real line arrangement that

t2 ≥ 3 +
∑
k≥3

(k − 3)tk ,

where tk is the number of points where exactly k lines cross.
For Ln, take the sides and lines of symmetry of a regular n-gon for
n odd (here is L7):

d = 2n
t2 = n points of multiplicity 2
t3 =

(n
2

)
points of multiplicity 3

tn = 1 point of multiplicity n

H(Ln) =
d2−

∑
k≥2 tkk

2∑
k≥2 tk

= −3 + εn
n→∞
−→ − 3.



Analogous result over C
Theorem (arXiv:1407.2966): Let L be a complex line
arrangement. Then H(L) > −4.

arXiv:1407.2966: T. Bauer, S. Di Rocco, B. Harbourne, J.
Huizenga, A. Lundman, P. Pokora, T. Szemberg: Bounded
Negativity and Arrangements of Lines, International Math. Res.
Notices (2015) [Note: IMRN version has many improvements over
arXiv version.]

Open Problem: Suppose L is a line arrangement defined over C.
How close to −4 can H(L) be? (Most negative currently known
example has H(L) = −225

67 ≈ −3.36.)

Open Problem: Suppose L is a line arrangement defined over Q.
How negative can H(L) be? (Most negative currently known
example has H(L) = −503

181 ≈ −2.779.)



Another open problem!

These examples of maximally negative known H(L) are very special.

The example with H(L) = −225
67 ≈ −3.36 is called the Wiman

arrangement. It has t2 = 0. Only 4 kinds of line arrangements with
t2 = 0 are known.

Open Problem: Are there any others? If not, why not?

The 4 known kinds:

(1) d ≥ 3 concurrent lines

(2) the d = 3t linear factors in (x t − y t)(x t − z t)(y t − z t), t ≥ 3

(3) Klein arrangement (1879): d = 21 lines, t3 = 28, t4 = 21

(4) Wiman arr. (1896): d = 45 lines, t3 = 120, t4 = 45, t5 = 36



Real simplicial line arrangements

The real Ln with H(Ln)→ −3 and the rational L with
H(L) = −503

181 ≈ −2.779 are simplicial (which means they
triangulate P2

R), but there are very few known rational simplicial
line arrangements (see Grünbaum, 2009, Cuntz
arXiv:1108.3000v1).



The rational arrangement L with H(L) = −503
181 ≈ −2.779

This arrangement also is simplicial and has d = 37 lines:



Another view
The same arrangement but with one line moved off to infinity:


