Recent results on computability of certain asymptotic quantities

Brian Harbourne

Department of Mathematics University of Nebraska-Lincoln

Vietnam-USA Joint Mathematical Meeting

Special session: Commutative Algebra and Its Interactions to Combinatorics

Organizers: Le Tuan Hoa and Ha Huy Tai

Slides available at: http://www.math.unl.edu/~bharbourne1/VietnamSlides.pdf

June 11, 2019

Abstract

The last few years have seen a lot of work on asymptotic quantities with connections to algebraic geometry, commutative algebra and combinatorics, like resurgences, Waldschmidt constants and H-constants. I will review these quantities and these connections and survey some of this work, and highlight results and open problems regarding the computability of some of these constants.

Set up

K is an algebraically closed field, of arbitrary characteristic.

Fat point scheme: $Z = m_1 p_1 + \cdots + m_s p_s$ for $p_1, \ldots, p_s \in \mathbb{P}^n$.

So Z is scheme defined by the ideal $I(Z) = I(p_1)^{m_1} \cap \cdots \cap I(p_s)^{m_s}$.

Note: $I(p_i) \subset K[\mathbb{P}^n] = K[x_0, \ldots, x_n]$ is the ideal generated by all homogeneous F with $F(p_i) = 0$.

Ordinary powers:
$$I(Z)^r = \left(I(p_1)^{m_1} \cap \cdots \cap I(p_s)^{m_s}\right)^r$$
.

Symbolic powers: $I(Z)^{(m)} = I(mZ) = I(p_1)^{mm_1} \cap \cdots \cap I(p_s)^{mm_s}$.

Fundamental Question: How do symbolic powers relate to ordinary powers?

Containment Problem *i* (CP*i*)

CP1: Given fat points $Z \subset \mathbb{P}^n$, find all (m, r) with $I(mZ) \subseteq I(Z)^r$.

Facts: Assume $0 \neq Z \subset \mathbb{P}^n$.

• (easy)
$$I(Z)^r \subseteq I(mZ)$$
 iff $r \ge m$.

- (easy) $I(mZ) \subseteq I(Z)^r$ always fails for m < r.
- (hard) **Thm** (Ein-Lazarsfeld-Smith/Hochster-Huneke: ELS-HH, early 2000s)

 $I(mZ) \subseteq I(Z)^r$ always holds for $m \ge nr$.

(In particular, $I(nrZ) \subseteq I(Z)^r$ always holds.)

CP2: What happens for $r \leq m < nr$?

A strategy

Strategy: Study how big can k be and still have $I(mZ) \subseteq I(Z)^r$ for $m \ge nr - k$.

Example: Take $K = \mathbb{C}$, n = 2, k = 1. Assume $m \ge nr - k = 2r - 1$.

- Failures of $I(mZ) \subseteq I(Z)^r$ are known when r = 2 (since 2013)
- No failures of $I(mZ) \subseteq I(Z)^r$ are known for r > 2.

Conjecture (Grifo, 2018): Let $k \ge 0$. Then $I(mZ) \subseteq I(Z)^r$ for all $m \ge nr - k$ for $r \gg 0$.

Question: If true, how big must *r* be for containment to hold?

Example result

Theorem: Let $Z = p_1 + p_2 + p_3 \subset \mathbb{P}^2$, 3 points in the plane not on a line (so n = 2). Then Grifo Conjecture holds for Z, and r > 3k/2 suffices.

How can one prove this?

It's enough to compute an asymptotic quantity, the resurgence.

To do this, we'll need to compute another asymptotic quantity, the Wadschmidt constant.

The resurgence

Bocci-Harbourne, 2010: The resurgence of I(Z) is defined to be

$$\rho(I(Z)) = \sup \left\{ \frac{m}{r} : I(mZ) \not\subseteq I(Z)^r \right\}.$$

Comment: Thus $m/r > \rho(I(Z))$ implies $I(mZ) \subseteq I(Z)^r$.

Fact: Let $0 \neq Z \subset \mathbb{P}^n$ be fat points. Then

 $1 \leq \rho(I(Z)) \leq n.$

Note: $1 \le \rho(I(Z))$ is easy and $\rho(I(Z)) = 1$ happens (take Z = p); $\rho(I(Z)) \le n$ is a corollary of ELS-HH Theorem.

Open Problem: Does $\rho(I(Z)) = n$ ever happen?

Application

Fact: If $\rho(I(Z)) < n$, then Grifo's conjecture holds for Z.

Proof: Assuming $\rho(I(Z)) < n$ and $m \ge nr - k$, we need to show for $r \gg 0$ that $I(mZ) \subseteq I(Z)^r$, so it's enough to show for $r \gg 0$ that

$$\frac{m}{r} > \rho(I(Z)).$$

But $\frac{m}{r} \ge \frac{nr-k}{r}$, while $\frac{nr-k}{r} > \rho(I(Z))$ simplifies to $r > \frac{k}{n-\rho(I(Z))}$.
Thus $I(mZ) \subseteq I(Z)^r$ holds for all $r > \frac{k}{n-\rho(I(Z))}$.

Example: Let $Z = p_1 + p_2 + p_3 \subset \mathbb{P}^2$, 3 points in the plane not on a line (so n = 2). **Claim**: $\rho(I(Z)) = 4/3 < n = 2$. Thus Grifo's Conjecture holds for Z for $r > \frac{k}{n - \rho(I(Z))} = 3k/2$. But why is $\rho(I(Z)) = 4/3$?

Computing resurgences

Question: How do you compute $\rho(I(Z))$?

In general it's not known! There are some special case results.

Theorem (Bocci-Harbourne, 2010):

$$\frac{\alpha(I(Z))}{\widehat{\alpha}(I(Z))} \le \rho(I(Z)) \le \frac{\operatorname{reg}(I(Z))}{\widehat{\alpha}(I(Z))}$$

 $\alpha(I(Z))$: the degree of a nonzero element of I(Z) of least degree.

reg(I(Z)): Castelnuovo-Mumford regularity.

$$\widehat{lpha}(I(Z)) = \lim_{m \to \infty} rac{lpha(I(mZ))}{m}$$
 (the Waldschmidt constant of $I(Z)$)

Back to the example

Example: Let $Z = p_1 + p_2 + p_3 \subset \mathbb{P}^2$, 3 points in the plane not on a line (so n = 2). So why is $\rho(I(Z)) = 4/3$?

First it's easy to check that $\alpha(I(Z)) = 2 = \operatorname{reg}(I(Z))$. Hence

$$\frac{2}{\widehat{\alpha}(I(Z))} = \frac{\alpha(I(Z))}{\widehat{\alpha}(I(Z))} \le \rho(I(Z)) \le \frac{\operatorname{reg}(I(Z))}{\widehat{\alpha}(I(Z))} = \frac{2}{\widehat{\alpha}(I(Z))}.$$

Thus $\rho(I(Z)) = \frac{2}{\widehat{\alpha}(I(Z))}$ so now we just need to compute $\widehat{\alpha}(I(Z))$.

Computing Waldschmidt constants

Question: How can you compute $\widehat{\alpha}(I(Z))$?

In general it's not known! There are some special case results.

The following fact holds for all $m \ge 1$ (due to Waldchmidt and Skoda for m = 1 in 1979):

$$\frac{\alpha(I(mZ))}{m+n-1} \leq \widehat{\alpha}(I(Z)) \leq \frac{\alpha(I(mZ))}{m}.$$

This shows you can *in principle* compute $\hat{\alpha}(I(Z))$ arbitrarily accurately just by computing $\alpha(I(mZ))$ for large enough *m*.

The upper bound is because
$$rac{lpha(I(mZ))}{m} \geq rac{lpha(I(tmZ))}{tm}$$
 for $t \geq 1$.

The lower bound uses a fact from ELS-HH:

Proof of lower bound

Fact (ELS-HH): For fat points $Z \subset \mathbb{P}^n$ we always have

$$I(r(m+n-1)Z) \subseteq I(mZ)^r$$
.

 $(m = 1 \text{ gives the case from before, } I(nrZ) \subseteq I(Z)^r)$

To show:

$$\frac{\alpha(I(mZ))}{m+n-1} \leq \widehat{\alpha}(I(Z))$$

Proof (Harbourne-Roé): Apply α to $I(r(m + n - 1)Z) \subseteq I(mZ)^r$ to get

$$r\alpha(I(mZ)) = \alpha(I(mZ)^r) \le \alpha(I(r(m+n-1)Z)).$$

Divide by r(m + n - 1) and take $\lim_{r\to\infty}$:

$$\frac{\alpha(I(mZ))}{m+n-1} \leq \frac{\alpha(I(r(m+n-1)Z))}{r(m+n-1)} \to \widehat{\alpha}(I(Z)).$$

Chudnovsky-Demailly Conjecture

Conjecture (1981):
$$\frac{lpha(I(mZ)) + n - 1}{m + n - 1} \leq \widehat{lpha}(I(Z))$$

Chudnovsky proves it for Z reduced, n = 2, m = 1; thus in this case we get for all $t \ge 1$ that

$$\frac{\alpha(I(Z))+1}{2} \leq \widehat{\alpha}(I(Z)) \leq \frac{\alpha(I(tZ))}{t}.$$

Now for Z being 3 noncollinear points in the plane and t = 2 we have

$$\frac{2+1}{2} = \frac{\alpha(I(Z))+1}{2} \le \widehat{\alpha}(I(Z)) \le \frac{\alpha(I(tZ))}{t} = \frac{3}{2}$$

So $\widehat{\alpha}(I(Z)) = 3/2$, hence $\rho(I(Z)) = 2/\widehat{\alpha}(I(Z)) = 4/3$.

Open Problems

- Compute $\widehat{\alpha}(I(Z))$ for $Z = p_1 + \cdots + p_s \subset \mathbb{P}^n$, $s \gg 0$, p_i generic.
- Nagata Conj. (1959): $n = 2, s > 9, p_i \text{ generic} \Rightarrow \widehat{\alpha}(I(Z)) = \sqrt{s}$
- Chudnovsky-Demailly Conj.: $\frac{\alpha(I(mZ)) + n 1}{m + n 1} \le \widehat{\alpha}(I(Z))$
- Grifo Conj.: Let $k \ge 0$. Then $I((nr k)Z) \subseteq I(Z)^r$ for $r \gg 0$.

• Does
$$\rho(I(Z)) = n$$
 ever happen?

Other recent work relates to combinatorics

• H.T. Ha and N.V. Trung (AMV 2019, arXiv:1808.05899, in article dedicated to 60th birthday of L.T. Hoa) prove:

Theorem. Let *I* be a squarefree monomial ideal. Then $\rho(I) \leq \omega(I)$, where $\omega(I)$ is the degree of a generator of maximal degree in a minimal set of generators for *I*.

• C. Bocci, S. Cooper, E. Guardo, B. Harbourne, M. Janssen, U. Nagel, A. Seceleanu, A. Van Tuyl, T. Vu (JACo 2016 arXiv:1508.00477)

Theorem. For a hypergraph H with a nontrivial edge,

$$\widehat{\alpha}(I(H)) = \frac{\chi^*(H)}{\chi^*(H) - 1}$$

where $\chi^*(H)$ is the fractional chromatic number of H.

Additional recent work

• M. DiPasquale, C.A. Francisco, J. Mermin, J. Schweig (TAMS 2019, arXiv:1808.01547) Shows $\hat{\rho}(I)$ is the maximum of finitely many ratios involving Waldschmidt-like constants. This reduces computing $\hat{\rho}(I)$ to computing Waldschmidt-like constants and thus gives an algorithm in some cases.

Note: Guardo-H_-Van Tuyl (2013):

$$\widehat{\rho}(I(Z)) = \sup \left\{ \frac{m}{r} : I(mtZ) \not\subseteq I(Z)^{rt}, \ t \gg 0 \right\}$$

• S. Tohaneanu, Y. Xie (arXiv:1903.10647).

Theorem: If $0 \neq Z \subset \mathbb{P}^n$ is a reduced point scheme, then

$$\rho(I(tZ)) \leq \frac{t+n-1}{t}$$

Note: Thus, for n, t > 1 and $0 \neq Z \subset \mathbb{P}^n$ a reduced point scheme, we have $\rho(I(tZ)) < n$, so Grifo's conjecture holds for I(tZ).

H-constants and Bounded Negativity

Let $F \in \mathbb{C}[x, y, z]$ be homogeneous, square free of degree d. Thus F = 0 defines a reduced plane curve C.

Let p_1, \ldots, p_s be the singular points of C, $m_i = \text{mult}_C(p_i)$.

Fundamental Question (arXiv:1407.2966): How singular can C be? More precisely, when s > 0, how negative can H(C) be, where

$$H(C)=\frac{d^2-\sum_i m_i^2}{s}?$$

Let $H_{\mathbb{P}^2} = \inf_{\substack{\text{reduced, singular} \\ \text{plane curves } C}} H(C).$

Bounded Negativity Problem: Is $H_{\mathbb{P}^2} = -\infty$?

H-constants for C irreducible

Example: For each *d* there is an irreducible plane curve C_d with $\deg(C_d) = d$ with $\binom{d-1}{2}$ double points (take a general map of \mathbb{P}^1 into \mathbb{P}^2).

Open Problem: Does there exist irreducible *C* with $H(C) \leq -2$?

H-constants for C a union of lines

Theorem (arXiv 1407.2966): Let *L* be a real line arrangement. Then H(L) > -3. Moreover, there is a sequence L_3, L_5, L_7, \ldots of real line arrangements such that $H(L_n) \xrightarrow{n \to \infty} -3$. **Proof**: H(L) > -3 follows from a combinatorical result of E. Melchior saying for a nontrivial real line arrangement that

$$t_2 \geq 3 + \sum_{k \geq 3} (k-3)t_k,$$

where t_k is the number of points where exactly k lines cross. For L_n , take the sides and lines of symmetry of a regular n-gon for n odd (here is L_7):

- d = 2n $t_2 = n \text{ points of multiplicity } 2$ $t_3 = \binom{n}{2} \text{ points of multiplicity } 3$
- $t_n = 1$ point of multiplicity n

$$H(L_n) = \frac{d^2 - \sum_{k \ge 2} t_k k^2}{\sum_{k \ge 2} t_k}$$
$$= -3 + \epsilon_n \xrightarrow{n \to \infty} - 3.$$

Analogous result over ${\mathbb C}$

Theorem (arXiv:1407.2966): Let *L* be a complex line arrangement. Then H(L) > -4.

arXiv:1407.2966: T. Bauer, S. Di Rocco, B. Harbourne, J. Huizenga, A. Lundman, P. Pokora, T. Szemberg: *Bounded Negativity and Arrangements of Lines*, International Math. Res. Notices (2015) [Note: IMRN version has many improvements over arXiv version.]

Open Problem: Suppose *L* is a line arrangement defined over \mathbb{C} . How close to $-4 \operatorname{can} H(L)$ be? (Most negative currently known example has $H(L) = -\frac{225}{67} \approx -3.36$.)

Open Problem: Suppose *L* is a line arrangement defined over \mathbb{Q} . How negative can H(L) be? (Most negative currently known example has $H(L) = -\frac{503}{181} \approx -2.779.$)

Another open problem!

These examples of maximally negative known H(L) are very special.

The example with $H(L) = -\frac{225}{67} \approx -3.36$ is called the Wiman arrangement. It has $t_2 = 0$. Only 4 kinds of line arrangements with $t_2 = 0$ are known.

Open Problem: Are there any others? If not, why not?

The 4 known kinds:

(1) $d \ge 3$ concurrent lines

(2) the d = 3t linear factors in $(x^t - y^t)(x^t - z^t)(y^t - z^t)$, $t \ge 3$

(3) Klein arrangement (1879): d = 21 lines, $t_3 = 28$, $t_4 = 21$

(4) Wiman arr. (1896): d = 45 lines, $t_3 = 120$, $t_4 = 45$, $t_5 = 36$

Real simplicial line arrangements

The real L_n with $H(L_n) \rightarrow -3$ and the rational L with $H(L) = -\frac{503}{181} \approx -2.779$ are simplicial (which means they triangulate $\mathbb{P}^2_{\mathbb{R}}$), but there are very few known rational simplicial line arrangements (see Grünbaum, 2009, Cuntz arXiv:1108.3000v1).

The rational arrangement L with $H(L) = \frac{-503}{181} \approx -2.779$ This arrangement also is simplicial and has d = 37 lines:

Another view

