Recent results on computability of certain asymptotic quantities

Brian Harbourne

Department of Mathematics University of Nebraska-Lincoln

Vietnam-USA Joint Mathematical Meeting
Special session: Commutative Algebra and Its Interactions to Combinatorics
Organizers: Le Tuan Hoa and Ha Huy Tai
Slides available at:
http://www.math.unl.edu/~bharbourne1/VietnamSlides.pdf

June 11, 2019

Abstract

The last few years have seen a lot of work on asymptotic quantities with connections to algebraic geometry, commutative algebra and combinatorics, like resurgences, Waldschmidt constants and H-constants. I will review these quantities and these connections and survey some of this work, and highlight results and open problems regarding the computability of some of these constants.

Set up

K is an algebraically closed field, of arbitrary characteristic.
Fat point scheme: $Z=m_{1} p_{1}+\cdots+m_{s} p_{s}$ for $p_{1}, \ldots, p_{s} \in \mathbb{P}^{n}$.
So Z is scheme defined by the ideal $I(Z)=I\left(p_{1}\right)^{m_{1}} \cap \cdots \cap I\left(p_{s}\right)^{m_{s}}$.
Note: $I\left(p_{i}\right) \subset K\left[\mathbb{P}^{n}\right]=K\left[x_{0}, \ldots, x_{n}\right]$ is the ideal generated by all homogeneous F with $F\left(p_{i}\right)=0$.

Ordinary powers: $I(Z)^{r}=\left(I\left(p_{1}\right)^{m_{1}} \cap \cdots \cap I\left(p_{s}\right)^{m_{s}}\right)^{r}$.
Symbolic powers: $I(Z)^{(m)}=I(m Z)=I\left(p_{1}\right)^{m m_{1}} \cap \cdots \cap I\left(p_{s}\right)^{m m_{s}}$.
Fundamental Question: How do symbolic powers relate to ordinary powers?

Containment Problem i (CPi)

CP1: Given fat points $Z \subset \mathbb{P}^{n}$, find all (m, r) with $I(m Z) \subseteq I(Z)^{r}$.
Facts: Assume $0 \neq Z \subset \mathbb{P}^{n}$.

- (easy) $I(Z)^{r} \subseteq I(m Z)$ iff $r \geq m$.
- (easy) $I(m Z) \subseteq I(Z)^{r}$ always fails for $m<r$.
- (hard) Thm (Ein-Lazarsfeld-Smith/Hochster-Huneke: ELS-HH, early 2000s)
$I(m Z) \subseteq I(Z)^{r}$ always holds for $m \geq n r$.
(In particular, $I(n r Z) \subseteq I(Z)^{r}$ always holds.)

CP2: What happens for $r \leq m<n r$?

A strategy

Strategy: Study how big can k be and still have $I(m Z) \subseteq I(Z)^{r}$ for $m \geq n r-k$.

Example: Take $K=\mathbb{C}, n=2, k=1$. Assume $m \geq n r-k=2 r-1$.

- Failures of $I(m Z) \subseteq I(Z)^{r}$ are known when $r=2$ (since 2013)
- No failures of $I(m Z) \subseteq I(Z)^{r}$ are known for $r>2$.

Conjecture (Grifo, 2018): Let $k \geq 0$. Then $I(m Z) \subseteq I(Z)^{r}$ for all $m \geq n r-k$ for $r \gg 0$.

Question: If true, how big must r be for containment to hold?

Example result

Theorem: Let $Z=p_{1}+p_{2}+p_{3} \subset \mathbb{P}^{2}, 3$ points in the plane not on a line (so $n=2$). Then Grifo Conjecture holds for Z, and $r>3 k / 2$ suffices.

$$
\bigcirc p_{2}
$$

$Z:$

$$
\bigcirc p_{1} \quad p_{3}
$$

How can one prove this?

It's enough to compute an asymptotic quantity, the resurgence.
To do this, we'll need to compute another asymptotic quantity, the Wadschmidt constant.

The resurgence

Bocci-Harbourne, 2010: The resurgence of $I(Z)$ is defined to be

$$
\rho(I(Z))=\sup \left\{\frac{m}{r}: I(m Z) \nsubseteq I(Z)^{r}\right\} .
$$

Comment: Thus $m / r>\rho(I(Z))$ implies $I(m Z) \subseteq I(Z)^{r}$.
Fact: Let $0 \neq Z \subset \mathbb{P}^{n}$ be fat points. Then

$$
1 \leq \rho(I(Z)) \leq n .
$$

Note: $1 \leq \rho(I(Z))$ is easy and $\rho(I(Z))=1$ happens (take $Z=p$); $\rho(I(Z)) \leq n$ is a corollary of ELS-HH Theorem.

Open Problem: Does $\rho(I(Z))=n$ ever happen?

Application

Fact: If $\rho(I(Z))<n$, then Grifo's conjecture holds for Z.
Proof: Assuming $\rho(I(Z))<n$ and $m \geq n r-k$, we need to show for $r \gg 0$ that $I(m Z) \subseteq I(Z)^{r}$, so it's enough to show for $r \gg 0$ that

$$
\frac{m}{r}>\rho(I(Z))
$$

But $\frac{m}{r} \geq \frac{n r-k}{r}$, while $\frac{n r-k}{r}>\rho(I(Z))$ simplifies to $r>\frac{k}{n-\rho(I(Z))}$.
Thus $I(m Z) \subseteq I(Z)^{r}$ holds for all $r>\frac{k}{n-\rho(I(Z))}$.

Example: Let $Z=p_{1}+p_{2}+p_{3} \subset \mathbb{P}^{2}, 3$ points in the plane not on a line (so $n=2$). Claim: $\rho(I(Z))=4 / 3<n=2$.
Thus Grifo's Conjecture holds for Z for $r>\frac{k}{n-\rho(I(Z))}=3 k / 2$. But why is $\rho(I(Z))=4 / 3$?

Computing resurgences

Question: How do you compute $\rho(l(Z))$?
In general it's not known! There are some special case results.
Theorem (Bocci-Harbourne, 2010):

$$
\frac{\alpha(I(Z))}{\widehat{\alpha}(I(Z))} \leq \rho(I(Z)) \leq \frac{\operatorname{reg}(I(Z))}{\widehat{\alpha}(I(Z))}
$$

$\alpha(I(Z))$: the degree of a nonzero element of $I(Z)$ of least degree.
reg $(I(Z))$: Castelnuovo-Mumford regularity.
$\widehat{\alpha}(I(Z))=\lim _{m \rightarrow \infty} \frac{\alpha(I(m Z))}{m}$ (the Waldschmidt constant of $\left.I(Z)\right)$

Back to the example

Example: Let $Z=p_{1}+p_{2}+p_{3} \subset \mathbb{P}^{2}, 3$ points in the plane not on a line (so $n=2$). So why is $\rho(I(Z))=4 / 3$?

First it's easy to check that $\alpha(I(Z))=2=\operatorname{reg}(I(Z))$. Hence

$$
\frac{2}{\widehat{\alpha}(I(Z))}=\frac{\alpha(I(Z))}{\widehat{\alpha}(I(Z))} \leq \rho(I(Z)) \leq \frac{\operatorname{reg}(I(Z))}{\widehat{\alpha}(I(Z))}=\frac{2}{\widehat{\alpha}(I(Z))} .
$$

Thus $\rho(I(Z))=\frac{2}{\widehat{\alpha}(I(Z))}$ so now we just need to compute $\widehat{\alpha}(I(Z))$.

Computing Waldschmidt constants

Question: How can you compute $\widehat{\alpha}(I(Z))$?
In general it's not known! There are some special case results.
The following fact holds for all $m \geq 1$ (due to Waldchmidt and Skoda for $m=1$ in 1979):

$$
\frac{\alpha(I(m Z))}{m+n-1} \leq \widehat{\alpha}(I(Z)) \leq \frac{\alpha(I(m Z))}{m}
$$

This shows you can in principle compute $\widehat{\alpha}(I(Z))$ arbitrarily accurately just by computing $\alpha(I(m Z))$ for large enough m.

The upper bound is because $\frac{\alpha(I(m Z))}{m} \geq \frac{\alpha(I(t m Z))}{t m}$ for $t \geq 1$.
The lower bound uses a fact from ELS-HH:

Proof of lower bound

Fact (ELS-HH): For fat points $Z \subset \mathbb{P}^{n}$ we always have

$$
I(r(m+n-1) Z) \subseteq I(m Z)^{r}
$$

$$
\left(m=1 \text { gives the case from before, } I(n r Z) \subseteq I(Z)^{r}\right)
$$

To show:

$$
\frac{\alpha(I(m Z))}{m+n-1} \leq \widehat{\alpha}(I(Z))
$$

Proof (Harbourne-Roé): Apply α to $I(r(m+n-1) Z) \subseteq I(m Z)^{r}$ to get

$$
r \alpha(I(m Z))=\alpha\left(I(m Z)^{r}\right) \leq \alpha(I(r(m+n-1) Z))
$$

Divide by $r(m+n-1)$ and take $\lim _{r \rightarrow \infty}$:

$$
\frac{\alpha(I(m Z))}{m+n-1} \leq \frac{\alpha(I(r(m+n-1) Z))}{r(m+n-1)} \rightarrow \widehat{\alpha}(I(Z))
$$

Chudnovsky-Demailly Conjecture

Conjecture (1981): $\frac{\alpha(I(m Z))+n-1}{m+n-1} \leq \widehat{\alpha}(I(Z))$
Chudnovsky proves it for Z reduced, $n=2, m=1$; thus in this case we get for all $t \geq 1$ that

$$
\frac{\alpha(I(Z))+1}{2} \leq \widehat{\alpha}(I(Z)) \leq \frac{\alpha(I(t Z))}{t}
$$

Now for Z being 3 noncollinear points in the plane and $t=2$ we have

$$
\frac{2+1}{2}=\frac{\alpha(I(Z))+1}{2} \leq \widehat{\alpha}(I(Z)) \leq \frac{\alpha(I(t Z))}{t}=\frac{3}{2} .
$$

So $\widehat{\alpha}(I(Z))=3 / 2$, hence $\rho(I(Z))=2 / \widehat{\alpha}(I(Z))=4 / 3$.

Open Problems

- Compute $\widehat{\alpha}(I(Z))$ for $Z=p_{1}+\cdots+p_{s} \subset \mathbb{P}^{n}, s \gg 0, p_{i}$ generic.
- Nagata Conj. (1959): $n=2, s>9, p_{i}$ generic $\Rightarrow \widehat{\alpha}(I(Z))=\sqrt{s}$
- Chudnovsky-Demailly Conj.: $\frac{\alpha(I(m Z))+n-1}{m+n-1} \leq \widehat{\alpha}(I(Z))$
- Grifo Conj.: Let $k \geq 0$. Then $I((n r-k) Z) \subseteq I(Z)^{r}$ for $r \gg 0$.
- Does $\rho(I(Z))=n$ ever happen?

Other recent work relates to combinatorics

- H.T. Ha and N.V. Trung (AMV 2019, arXiv:1808.05899, in article dedicated to 60th birthday of L.T. Hoa) prove:

Theorem. Let I be a squarefree monomial ideal. Then $\rho(I) \leq \omega(I)$, where $\omega(I)$ is the degree of a generator of maximal degree in a minimal set of generators for l.

- C. Bocci, S. Cooper, E. Guardo, B. Harbourne, M. Janssen, U. Nagel, A. Seceleanu, A. Van Tuyl, T. Vu (JACo 2016 arXiv:1508.00477)

Theorem. For a hypergraph H with a nontrivial edge,

$$
\widehat{\alpha}(I(H))=\frac{\chi^{*}(H)}{\chi^{*}(H)-1}
$$

where $\chi^{*}(H)$ is the fractional chromatic number of H.

Additional recent work

- M. DiPasquale, C.A. Francisco, J. Mermin, J. Schweig (TAMS 2019, arXiv:1808.01547) Shows $\widehat{\rho}(I)$ is the maximum of finitely many ratios involving Waldschmidt-like constants. This reduces computing $\widehat{\rho}(I)$ to computing Waldschmidt-like constants and thus gives an algorithm in some cases.

Note: Guardo-H__-Van Tuyl (2013):

$$
\widehat{\rho}(I(\bar{Z}))=\sup \left\{\frac{m}{r}: I(m t Z) \nsubseteq I(Z)^{r t}, t \gg 0\right\}
$$

- S. Tohaneanu, Y. Xie (arXiv:1903.10647).

Theorem: If $0 \neq Z \subset \mathbb{P}^{n}$ is a reduced point scheme, then

$$
\rho(I(t Z)) \leq \frac{t+n-1}{t}
$$

Note: Thus, for $n, t>1$ and $0 \neq Z \subset \mathbb{P}^{n}$ a reduced point scheme, we have $\rho(I(t Z))<n$, so Grifo's conjecture holds for $I(t Z)$.

H -constants and Bounded Negativity

Let $F \in \mathbb{C}[x, y, z]$ be homogeneous, square free of degree d.
Thus $F=0$ defines a reduced plane curve C.
Let p_{1}, \ldots, p_{s} be the singular points of $C, m_{i}=\operatorname{mult}_{C}\left(p_{i}\right)$.
Fundamental Question (arXiv:1407.2966): How singular can C be? More precisely, when $s>0$, how negative can $H(C)$ be, where

$$
H(C)=\frac{d^{2}-\sum_{i} m_{i}^{2}}{s} ?
$$

Let $H_{\mathbb{P}^{2}}=\inf _{\text {reduced, singular }} H(C)$.
plane curves C
Bounded Negativity Problem: Is $H_{\mathbb{P}^{2}}=-\infty$?

H -constants for C irreducible

Example: For each d there is an irreducible plane curve C_{d} with $\operatorname{deg}\left(C_{d}\right)=d$ with $\binom{d-1}{2}$ double points (take a general map of \mathbb{P}^{1} into \mathbb{P}^{2}).

$d=3: 1$ node
Thus $H\left(C_{d}\right)=\frac{d^{2}-4\binom{d-1}{2}}{\binom{d-1}{2}}=-2+\frac{6 d-4}{(d-1)(d-2)} \xrightarrow{d \rightarrow \infty}-2$.

Open Problem: Does there exist irreducible C with $H(C) \leq-2$?

H-constants for C a union of lines

Theorem (arXiv 1407.2966): Let L be a real line arrangement. Then $H(L)>-3$. Moreover, there is a sequence $L_{3}, L_{5}, L_{7}, \ldots$ of real line arrangements such that $H\left(L_{n}\right) \xrightarrow{n \rightarrow \infty}-3$.
Proof: $H(L)>-3$ follows from a combinatorical result of
E. Melchior saying for a nontrivial real line arrangement that

$$
t_{2} \geq 3+\sum_{k \geq 3}(k-3) t_{k}
$$

where t_{k} is the number of points where exactly k lines cross.
For L_{n}, take the sides and lines of symmetry of a regular n-gon for n odd (here is L_{7}):

$$
\begin{aligned}
& d=2 n \\
& t_{2}=n \text { points of multiplicity } 2 \\
& t_{3}=\binom{n}{2} \text { points of multiplicity } 3 \\
& t_{n}=1 \text { point of multiplicity } n \\
& H\left(L_{n}\right)=\frac{d^{2}-\sum_{k \geq 2} t_{k} k^{2}}{\sum_{k \geq 2} t_{k}} \\
& =-3+\epsilon_{n} \xrightarrow{n \rightarrow \infty}-3 .
\end{aligned}
$$

Analogous result over \mathbb{C}

Theorem (arXiv:1407.2966): Let L be a complex line arrangement. Then $H(L)>-4$.
arXiv:1407.2966: T. Bauer, S. Di Rocco, B. Harbourne, J. Huizenga, A. Lundman, P. Pokora, T. Szemberg: Bounded Negativity and Arrangements of Lines, International Math. Res. Notices (2015) [Note: IMRN version has many improvements over arXiv version.]

Open Problem: Suppose L is a line arrangement defined over \mathbb{C}. How close to -4 can $H(L)$ be? (Most negative currently known example has $H(L)=-\frac{225}{67} \approx-3.36$.)

Open Problem: Suppose L is a line arrangement defined over \mathbb{Q}. How negative can $H(L)$ be? (Most negative currently known example has $H(L)=-\frac{503}{181} \approx-2.779$.)

Another open problem!

These examples of maximally negative known $H(L)$ are very special.
The example with $H(L)=-\frac{225}{67} \approx-3.36$ is called the Wiman arrangement. It has $t_{2}=0$. Only 4 kinds of line arrangements with $t_{2}=0$ are known.

Open Problem: Are there any others? If not, why not?
The 4 known kinds:
(1) $d \geq 3$ concurrent lines
(2) the $d=3 t$ linear factors in $\left(x^{t}-y^{t}\right)\left(x^{t}-z^{t}\right)\left(y^{t}-z^{t}\right), t \geq 3$
(3) Klein arrangement (1879): $d=21$ lines, $t_{3}=28, t_{4}=21$
(4) Wiman arr. (1896): $d=45$ lines, $t_{3}=120, t_{4}=45, t_{5}=36$

Real simplicial line arrangements

The real L_{n} with $H\left(L_{n}\right) \rightarrow-3$ and the rational L with $H(L)=-\frac{503}{181} \approx-2.779$ are simplicial (which means they triangulate $\mathbb{P}_{\mathbb{R}}^{2}$), but there are very few known rational simplicial line arrangements (see Grünbaum, 2009, Cuntz arXiv:1108.3000v1).

The rational arrangement L with $H(L)=\frac{-503}{181} \approx-2.779$
This arrangement also is simplicial and has $d=37$ lines:

Another view

The same arrangement but with one line moved off to infinity:

