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Abstract

The last few years have seen a lot of work on asymptotic quantities
with connections to algebraic geometry, commutative algebra and
combinatorics, like resurgences, Waldschmidt constants and
H-constants. | will review these quantities and these connections
and survey some of this work, and highlight results and open
problems regarding the computability of some of these constants.



Set up

K is an algebraically closed field, of arbitrary characteristic.
Fat point scheme: Z = myp1 + - - - + mgsps for p1,..., ps € P".
So Z is scheme defined by the ideal I(Z) = I(p1)™ N---N1(ps)™.

Note: /(p;) C K[P"] = K[xo, ..., xn] is the ideal generated by all
homogeneous F with F(p;) = 0.

Ordinary powers: [(Z)" = <l(p1)ml NN /(Ps)ms) :

Symbolic powers: [(Z)(™) = I(mZ) = I(p1)™™ N --- N [(ps)™™s.

Fundamental Question: How do symbolic powers relate to
ordinary powers?



Containment Problem i (CP/)
CP1: Given fat points Z C P", find all (m, r) with I(mZ) C I(Z)".

Facts: Assume 0 # Z C P".
e (easy) I(Z)" C I(mZ) iff r > m.
o (easy) I(mZ) C I(Z)" always fails for m < r.

e (hard) Thm (Ein-Lazarsfeld-Smith/Hochster-Huneke: ELS-HH,
early 2000s)

I(mZ) C I1(Z)" always holds for m > nr.

(In particular, I(nrZ) C I(Z)" always holds.)

CP2: What happens for r < m < nr?



A strategy

Strategy: Study how big can k be and still have I(mZ) C I(Z)"
for m > nr — k.

Example: Take K =C, n=2, k =1. Assume
m>nr—k=2r-—1.

e Failures of /(mZ) C I(Z)" are known when r = 2 (since 2013)
e No failures of /(mZ) C I(Z)" are known for r > 2.

Conjecture (Grifo, 2018): Let k > 0. Then I(mZ) C I(Z)" for all
m > nr — k for r > 0.

Question: If true, how big must r be for containment to hold?



Example result

Theorem: Let Z = p; + po + p3 C P2, 3 points in the plane not
on a line (so n = 2). Then Grifo Conjecture holds for Z, and
r > 3k /2 suffices.

@ P2
Z:
eP3

o P1
How can one prove this?
It's enough to compute an asymptotic quantity, the resurgence.

To do this, we'll need to compute another asymptotic quantity, the
Wadschmidt constant.



The resurgence

Bocci-Harbourne, 2010: The resurgence of /(Z) is defined to be
m r
p(1(2)) =sup { ™ : I(mZ) € 1(2)" }.
r
Comment: Thus m/r > p(/(Z)) implies I((mZ) C I(Z)".
Fact: Let 0 # Z C P" be fat points. Then
1<p(I(2) <n.

Note: 1 < p(/(Z)) is easy and p(/(Z)) = 1 happens (take Z = p);
p(1(Z)) < nis a corollary of ELS-HH Theorem.

Open Problem: Does p(/(Z)) = n ever happen?



Application
Fact: If p(/(Z)) < n, then Grifo's conjecture holds for Z.

Proof: Assuming p(/(Z)) < nand m > nr — k, we need to show
for r > 0 that /(mZ) C I(Z)", so it's enough to show for r > 0 that

= > p(1(2)).

—k —k
But > " while “—= > p(/(Z)) simplifies to r > 7= (2))

Thus I(mZ) C I(Z)" holds for all r > ———F———.
(m2) € 1(2) = ()

Example: Let Z = p; + p» + p3 C IP?, 3 points in the plane not on
a line (so n=2). Claim: p(/(Z))=4/3<n=2.

k
Thus Grifo’s Conjecture holds for Z for r > ————
n—p(I(2))
But why is p(/(Z)) = 4/37?

= 3k/2.



Computing resurgences

Question: How do you compute p(/(Z))?

In general it's not known! There are some special case results.

Theorem (Bocci-Harbourne, 2010):

a(l(2))
a(l(2))

<p(l(2)) <

a(l(Z)): the degree of a nonzero element of /(Z) of least degree.

reg(/(Z)): Castelnuovo-Mumford regularity.

a((2)) = 1im 2U(m2)

m—o0 m

(the Waldschmidt constant of /(Z))



Back to the example
Example: Let Z = p; + p» + p3 C IP?, 3 points in the plane not on
a line (so n = 2). So why is p(/(Z)) = 4/3?

First it's easy to check that a(/(Z)) =2 = reg(/(Z)). Hence

eg((2)) 2
a(I(2)) ~ a(i2)

> _ali2)
a(2) ~ awz) ==

Thus p(I(2)) = so now we just need to compute a(/(Z2)).
a



Computing Waldschmidt constants

Question: How can you compute a(/(Z))?
In general it's not known! There are some special case results.

The following fact holds for all m > 1 (due to Waldchmidt and
Skoda for m =1 in 1979):

a(l(m2)) <a(I(2) < a(l(mZ)).

m+n—1 m
This shows you can in principle compute a(/(Z)) arbitrarily
accurately just by computing «(/(mZ)) for large enough m.

a(l(m2)) « al(tm2)) ¢ 4~ 1
= tm =~

The upper bound is because -

The lower bound uses a fact from ELS-HH:



Proof of lower bound
Fact (ELS-HH): For fat points Z C P" we always have

I(r(m+n—-1)Z) C I(mZ)".

(m =1 gives the case from before, I(nrZ) C I(Z)")

To show: (I(m2))

Proof (Harbourne-Roé): Apply o to I(r(m+n—1)Z) C I(mZ)"
to get

ra(l(mZ2)) = a(l(mZ2)") < a(I(r(m + n —1)Z)).
Divide by r(m + n—1) and take lim,_o:

a(l(mZ)) < a(l(r(m+n—1)2))
m+n—17— r(m+n—1)

- a(1(2)).



Chudnovsky-Demailly Conjecture

a(l(mZ))+n—-1

Conjecture (1981): - 1
m+n—

<a(l(2))

Chudnovsky proves it for Z reduced, n = 2, m = 1; thus in this
case we get for all t > 1 that

1(Z 1 1(tZ
AU@)+1 _ 5 olI(e2)
2 t
Now for Z being 3 noncollinear points in the plane and t = 2 we
have
2+1 1(Z 1 I(tZ
£1_all2)FL iz o) 3

So a(I(2)) = 3/2, hence p(I(2)) = 2/a(I(2)) = 4/3.



Open Problems

e Compute a(/(Z)) for Z=p1 +---+ ps CP", s >0, p; generic.
e Nagata Conj. (1959): n =2, s > 9, p; generic = a(l(Z)) =+/s

a(l(mZ))+n—-1

e Chudnovsky-Demailly Conj.: n 1
m+n—

<a(l(2))

e Grifo Conj.: Let k > 0. Then I((nr — k)Z) C I(Z)" for r > 0.

e Does p(/(Z)) = n ever happen?



Other recent work relates to combinatorics

e H.T. Ha and N.V. Trung (AMV 2019, arXiv:1808.05899, in
article dedicated to 60th birthday of L.T. Hoa) prove:

Theorem. Let / be a squarefree monomial ideal. Then
(1) < w(l), where w(/) is the degree of a generator of maximal
degree in a minimal set of generators for /.

e C. Bocai, S. Cooper, E. Guardo, B. Harbourne, M. Janssen, U.
Nagel, A. Seceleanu, A. Van Tuyl, T. Vu (JACo 2016
arXiv:1508.00477)

Theorem. For a hypergraph H with a nontrivial edge,

X" (H)
x*(H) -1

where x*(H) is the fractional chromatic number of H.

a(l(H)) =



Additional recent work

e M. DiPasquale, C.A. Francisco, J. Mermin, J. Schweig (TAMS
2019, arXiv:1808.01547) Shows p(/) is the maximum of finitely
many ratios involving Waldschmidt-like constants. This reduces
computing p(/) to computing Waldschmidt-like constants and thus
gives an algorithm in some cases.

Note: Guardo-H__-Van Tuyl (2013):
5(1(2)) = sup {$ I(mtZ) € 1(2)T, t> o}

e S. Tohaneanu, Y. Xie (arXiv:1903.10647).

Theorem: If 0 £ Z C P" is a reduced point scheme, then

t+n—1

p1(e2)) < =

Note: Thus, for n,t > 1 and 0 # Z C P" a reduced point scheme,
we have p(/(tZ)) < n, so Grifo's conjecture holds for /(tZ).



H-constants and Bounded Negativity
Let F € Clx,y, z] be homogeneous, square free of degree d.
Thus F = 0 defines a reduced plane curve C.
Let p1, ..., ps be the singular points of C, m; = multc(p;).

Fundamental Question (arXiv:1407.2966): How singular can C
be? More precisely, when s > 0, how negative can H(C) be, where

25 m?
H(C)= L= 2imi SZ""'?

Let Hp = inf H(C).

reduced, singular
plane curves C

Bounded Negativity Problem: Is Hp> = —00?



H-constants for C irreducible

Example: For each d there is an irreducible plane curve Cy with
deg(Cy) = d with (dgl) double points (take a general map of P!

into P2).
d = 3: 1 node d = 4: 3 nodes d= 5 6 nodes
d? —4(%;h) 6d —4  dooo
(dgl) (d—1)(d—-2)

Open Problem: Does there exist irreducible C with H(C) < —27



H-constants for C a union of lines
Theorem (arXiv 1407.2966): Let L be a real line arrangement.
Then H(L) > —3. Moreover, there is a sequence L3, Ls, L7, ... of
real line arrangements such that H(Ln)nj>o - 3.
Proof: H(L) > —3 follows from a combinatorical result of
E. Melchior saying for a nontrivial real line arrangement that

th >3+ Z(k — 3)tk,
k>3
where ty is the number of points where exactly k lines cross.
For L,, take the sides and lines of symmetry of a regular n-gon for

n odd (here is Ly): de

2n
n points of multiplicity 2
t3 = (3) points of multiplicity 3
tp, = 1 point of multiplicity n

th =

d?=3 o, tik?
H(Ln) = —~~5—

n—o0



Analogous result over C

Theorem (arXiv:1407.2966): Let L be a complex line
arrangement. Then H(L) > —4.

arXiv:1407.2966: T. Bauer, S. Di Rocco, B. Harbourne, J.
Huizenga, A. Lundman, P. Pokora, T. Szemberg: Bounded
Negativity and Arrangements of Lines, International Math. Res.
Notices (2015) [Note: IMRN version has many improvements over
arXiv version.]

Open Problem: Suppose L is a line arrangement defined over C.
How close to —4 can H(L) be? (Most negative currently known
example has H(L) = —22 ~ —3.36.)

Open Problem: Suppose L is a line arrangement defined over Q.
How negative can H(L) be? (Most negative currently known
example has H(L) = =393 ~ —2.779.)



Another open problem!

These examples of maximally negative known H(L) are very special.

The example with H(L) = —22 ~ —3.36 is called the Wiman

arrangement. It has t, = 0. Only 4 kinds of line arrangements with
t, = 0 are known.

Open Problem: Are there any others? If not, why not?

The 4 known kinds:

(1) d > 3 concurrent lines

(2) the d = 3t linear factors in (x* — y*)(x* — z)(y* — z"), t > 3
(3) Klein arrangement (1879): d = 21 lines, t3 = 28, t5 = 21

(4) Wiman arr. (1896): d = 45 lines, t3 = 120, t; = 45, ts = 36



Real simplicial line arrangements

The real L, with H(L,) — —3 and the rational L with

H(L) = ‘;’gf A —2.779 are simplicial (which means they
triangulate P2 =), but there are very few known rational simplicial
line arrangements (see Griinbaum, 2009, Cuntz
arXiv:1108.3000v1).
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The rational arrangement L with H(L) = =¥ ~ —2.779

This arrangement also is simplicial and has d = 37 lines:

= i: =
BTN
7S

Za




Another view
The same arrangement but with one line moved off to infinity:




